Apache HBase 2 Reference Guide

Apache HBase Team

Version 3.0.0-SNAPSHOT

cContents

Preface
Getting Started

1.

2.
Apac

3.

4
5
6.
7
8
9

10

Introduction
Quick Start - Standalone HBase
he HBase Configuration

Configuration Files

. Basic Prerequisites

. HBase run modes: Standalone and Distributed

Running and Confirming Your Installation

. Default Configuration
. Example Configurations

. The Important Configurations

. Dynamic Configuration

Upgrading

11
12
13

. HBase version number and compatibility
. Rollback
. Upgrade Paths

The Apache HBase Shell

14.
15.
16.
17.
18.
19.
20.

Data

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

Scripting with Ruby

Running the Shell in Non-Interactive Mode
HBase Shell in OS Scripts

Read HBase Shell Commands from a Command File
Passing VM Options to the Shell

Overriding configuration starting the HBase Shell
Shell Tricks
Model

Conceptual View

Physical View

Namespace

Table

Row

Column Family

Cells

Data Model Operations

Versions

Sort Order

Column Metadata

Joins

O W P

18
19
21
27
31
32
£3
75
83
86
87
92
96
107
108
109
110
112
114
415
116
122
123
425
126
128
129
430
131
132
134
139
140
141

33.

ACID

HBase and Schema Design

34.
35.

Schema Creation
Table Schema Rules Of Thumb

RegionServer Sizing Rules of Thumb

36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47,

On the number of column families

Rowkey Design

Number of Versions

Supported Datatypes

Joins

Time To Live (TTL)

Keeping Deleted Cells

Secondary Indexes and Alternate Query Paths
Constraints

Schema Design Case Studies

Operational and Performance Configuration Options

Special Cases

HBase and MapReduce

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.

HBase, MapReduce, and the CLASSPATH

MapReduce Scan Caching

Bundled HBase MapReduce Jobs

HBase as a MapReduce Job Data Source and Data Sink
Writing HFiles Directly During Bulk Import

RowCounter Example

Map-Task Splitting

HBase MapReduce Examples

Accessing Other HBase Tables in a MapReduce Job
Speculative Execution

Cascading

Securing Apache HBase

59.
60.
61.
62.
63.
64.
65.

Using Secure HTTP (HTTPS) for the Web Ul

Using SPNEGO for Kerberos authentication with Web Uls
Secure Client Access to Apache HBase

Simple User Access to Apache HBase

Securing Access to HDFS and ZooKeeper

Securing Access To Your Data

Security Configuration Example

Architecture

66.
67.
68.

Overview
Catalog Tables
Client

142
143
144
145
146
147
148
155
156
157
158
159
163
165
166
176
179
180
181
186
187
188
189
190
191
192
199
200
201
202
203
204
206
213
216
218
244
247
248
250
251

69.
70.
71.
72.
73.
74.
75.
76.

Client Request Filters

Master

RegionServer

Regions

Bulk Loading

HDFS

Timeline-consistent High Available Reads
Storing Medium-sized Objects (MOB)

In-memory Compaction

7.
78.

Overview

Enabling

Backup and Restore

79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

Overview

Terminology

Planning

First-time configuration steps

Backup and Restore commands

Administration of Backup Images

Configuration keys

Best Practices

Scenario: Safeguarding Application Datasets on Amazon S3
Security of Backup Data

Technical Details of Incremental Backup and Restore
A Warning on File System Growth

Capacity Planning

Limitations of the Backup and Restore Utility

Synchronous Replication

93.
94.
95.

Background
Design

Operation and maintenance

Apache HBase APIs

96.

Examples

Apache HBase External APIs

97.
98.
99.

REST
Thrift
C/C++ Apache HBase Client

100. Using Java Data Objects (JDO) with HBase
101. Scala
102. Jython

Thrift APl and Filter Language

103. Filter Language

255
261
264
284
311
314
315
327
332
333
334
336
337
338
339
341
343
349
352
353
355
358
359
360
361
363
365
366
367
368
370
371
373
374
385
386
387
390
392
395
396

HBase and Spark

104. Basic Spark

105. Spark Streaming

106. Bulk Load

107. SparkSQL/DataFrames
Apache HBase Coprocessors

108. Coprocessor Overview

109. Types of Coprocessors

110. Loading Coprocessors

111. Examples

112. Guidelines For Deploying A Coprocessor

113. Restricting Coprocessor Usage
Apache HBase Performance Tuning

114. Operating System

115. Network

116. Java

117. HBase Configurations

118. ZooKeeper

119. Schema Design

120. HBase General Patterns

121. Writing to HBase

122. Reading from HBase

123. Deleting from HBase

124. HDFS

125. Amazon EC2

126. Collocating HBase and MapReduce

127. Case Studies
Troubleshooting and Debugging Apache HBase

128. General Guidelines

129. Logs

130. Resources

131. Tools

132. Client

133. MapReduce

134. NameNode

135. Network

136. RegionServer

137. Master

138. ZooKeeper

139. Amazon EC2

140. HBase and Hadoop version issues

402
403
406
408
412
419
420
421
423
428
434
436
A37
438
439
441
442
446
447
451
452
455
460
461
463
464
465
466
467
468
472
473
482
486
488
491
492
501
503
504
505

141.
142.
143.
144.
145.
146.

HBase and HDFS

Running unit or integration tests
Case Studies

Cryptographic Features
Operating System Specific Issues

JDK Issues

Apache HBase Case Studies

147.
148.
149.

Overview
Schema Design

Performance/Troubleshooting

Apache HBase Operational Management

150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.

HBase Tools and Utilities
Region Management
Node Management
HBase Metrics

HBase Monitoring

Cluster Replication

Running Multiple Workloads On a Single Cluster

HBase Backup

HBase Snapshots

Storing Snapshots in Microsoft Azure Blob Storage

Capacity Planning and Region Sizing
Table Rename
RegionServer Grouping

Region Normalizer

Building and Developing Apache HBase

164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.

Getting Involved

Apache HBase Repositories

IDEs

Building Apache HBase

Releasing Apache HBase

Voting on Release Candidates
Announcing Releases

Generating the HBase Reference Guide
Updating hbase.apache.org

Tests

Developer Guidelines

Unit Testing HBase Applications

175.
176.
177.

JUnit
Mockito
MRUnit

506
509
510
511
512
513
514
515
516
517
521
522
548
549
554
559
565
578
586
588
592
593
597
598
602
607
608
611
612
615
619
627
628
629
630
631
645
661
662
664
666

178. Integration Testing with an HBase Mini-Cluster
Protobuf in HBase
179. Protobuf
Procedure Framework (Pv2): HBASE-12439
180. Procedures
181. Subprocedures
182. ProcedureExecutor
183. Nonces
184. Wait/Wake/Suspend/Yield
185. Locking
186. Procedure Types
187. References
AMv2 Description for Devs
188. Background
189. New System
190. Procedures Detail
191. UI
192. Logging
193. Implementation Notes
194. New Configs
195. Tools
ZooKeeper
196. Using existing ZooKeeper ensemble
197. SASL Authentication with ZooKeeper
Community
198. Decisions
199. Community Roles
200. Commit Message format
Appendix
Appendix A: Contributing to Documentation
Appendix B: FAQ
Appendix C: Access Control Matrix
Appendix D: Compression and Data Block Encoding In HBase
Appendix E: SQL over HBase
Appendix F: YCSB
Appendix G: HFile format
Appendix H: Other Information About HBase
Appendix |: HBase History
Appendix J: HBase and the Apache Software Foundation
Appendix K: Apache HBase Orca
Appendix L: Enabling Dapper-like Tracing in HBase

668
670
671
673
674
677
678
679
680
681
682
683
684
685
686
687
689
690
691
692
693
694
696
697
704
705
706
707
708
709
720
723
(29
740
q41
742
751
752
/53
754
/55

201. Client Modifications

202. Tracing from HBase Shell

Appendix M: 0.95 RPC Specification

Appendix N: Known Incompatibilities Among HBase Versions

203. HBase 2.0 Incompatible Changes

{57
/58
59
(63
(64

Preface

This is the official reference guide for the HBase version it ships with.

Herein you will find either the definitive documentation on an HBase topic as of its standing when
the referenced HBase version shipped, or it will point to the location in Javadoc or JIRA where the
pertinent information can be found.

About This Guide

This reference guide is a work in progress. The source for this guide can be found in the
_src/main/asciidoc directory of the HBase source. This reference guide is marked up using AsciiDoc
from which the finished guide is generated as part of the 'site’ build target. Run

mvn site

to generate this documentation. Amendments and improvements to the documentation are
welcomed. Click this link to file a new documentation bug against Apache HBase with some values
pre-selected.

Contributing to the Documentation

For an overview of AsciiDoc and suggestions to get started contributing to the documentation, see
the relevant section later in this documentation

Heads-up if this is your first foray into the world of distributed computingE

If this is your first foray into the wonderful world of Distributed Computing, then you are in for
some interesting times. First off, distributed systems are hard; making a distributed system hum
requires a disparate skillset that spans systems (hardware and software) and networking.

Your clusterOs operation can hiccup because of any of a myriad set of reasons from bugs in HBase
itself through misconfigurations!N!misconfiguration of HBase but also operating system
misconfigurations!N!through to hardware problems whether it be a bug in your network card
drivers or an underprovisioned RAM bus (to mention two recent examples of hardware issues that
manifested as "HBase is slow"). You will also need to do a recalibration if up to this your computing
has been bound to a single box. Here is one good starting point: Fallacies of Distributed Computing

That said, you are welcome.
1tOs a fun place to be.
Yours, the HBase Community.

Reporting Bugs

Please use JIRA to report non-security-related bugs.

To protect existing HBase installations from new vulnerabilities, please do not use JIRA to report
security-related bugs. Instead, send your report to the mailing list private@hbase.apache.org , which
allows anyone to send messages, but restricts who can read them. Someone on that list will contact

you to follow up on your report.

https://hbase.apache.org/
https://hbase.apache.org/apidocs/index.html
https://issues.apache.org/jira/browse/HBASE
http://asciidoc.org/
https://issues.apache.org/jira/secure/CreateIssueDetails!init.jspa?pid=12310753&issuetype=1&components=12312132&summary=SHORT+DESCRIPTION
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
https://issues.apache.org/jira/browse/hbase
mailto:private@hbase.apache.org

Support and Testing Expectations

The phrases /supported/, /not supported/, /tested/, and /not tested/ occur several places throughout
this guide. In the interest of clarity, here is a brief explanation of what is generally meant by these
phrases, in the context of HBase.

Commercial technical support for Apache HBase is provided by many Hadoop
vendors. This is not the sense in which the term /support/ is used in the context of
the Apache HBase project. The Apache HBase team assumes no responsibility for
your HBase clusters, your configuration, or your data.

Supported

In the context of Apache HBase, /supported/ means that HBase is designed to work in the way
described, and deviation from the defined behavior or functionality should be reported as a bug.

Not Supported

In the context of Apache HBase, /not supported/ means that a use case or use pattern is not
expected to work and should be considered an antipattern. If you think this designation should
be reconsidered for a given feature or use pattern, file a JIRA or start a discussion on one of the
mailing lists.

Tested

In the context of Apache HBase, /tested/ means that a feature is covered by unit or integration
tests, and has been proven to work as expected.

Not Tested

In the context of Apache HBase, /not tested/ means that a feature or use pattern may or may not
work in a given way, and may or may not corrupt your data or cause operational issues. It is an
unknown, and there are no guarantees. If you can provide proof that a feature designated as
/not tested/ does work in a given way, please submit the tests and/or the metrics so that other
users can gain certainty about such features or use patterns.

Getting Started

Chapter 1. Introduction

Quickstart will get you up and running on a single-node, standalone instance of HBase.

Chapter 2. Quick Start - Standalone HBase

This section describes the setup of a single-node standalone HBase. A standalone instance has all
HBase daemons!N!the Master, RegionServers, and ZooKeeper!N!running in a single JVM persisting

to the local filesystem. It is our most basic deploy profile. We will show you how to create a table in
HBase using the hbase shell CLI, insert rows into the table, perform put and scan operations
against the table, enable or disable the table, and start and stop HBase.

Apart from downloading HBase, this procedure should take less than 10 minutes.

2.1. JDK Version Requirements

HBase requires that a JDK be installed. See Java for information about supported JDK versions.

2.2. Get Started with HBase

Procedure: Download, Configure, and Start HBase in Standalone Mode

1. Choose a download site from this list of Apache Download Mirrors . Click on the suggested top
link. This will take you to a mirror of HBase Releases Click on the folder named stable and then
download the binary file that ends in .tar.gz to your local filesystem. Do not download the file
ending in src.tar.gz for now.

2. Extract the downloaded file, and change to the newly-created directory.

$ tar xzvf hbase 3.0.0- SNAPSH®IN. tar . gz
$ cd hbase 3.0.0- SNAPSHOT

3. You are required to set the JAVA_ HOMBvironment variable before starting HBase. You can set
the variable via your operating systemOs usual mechanism, but HBase provides a central
mechanism, conf/hbase-env.sh. Edit this file, uncomment the line starting with JAVA HOMiAd set
it to the appropriate location for your operating system. The JAVA_HOM&iable should be set to
a directory which contains the executable file bin/java . Most modern Linux operating systems
provide a mechanism, such as /usr/bin/alternatives on RHEL or CentOS, for transparently
switching between versions of executables such as Java. In this case, you can set JAVA HONMEhe
directory containing the symbolic link to bin/java , which is usually /usr.

JAVA _HOME=/usr

4. Edit conf/hbase-site.xml, which is the main HBase configuration file. At this time, you need to
specify the directory on the local filesystem where HBase and ZooKeeper write data and
acknowledge some risks. By default, a new directory is created under /tmp. Many servers are
configured to delete the contents of /tmp upon reboot, so you should store the data elsewhere.
The following configuration will store HBaseOs data in the hbase directory, in the home directory
of the user called testuser . Paste the <property> tags beneath the <configuration> tags, which
should be empty in a new HBase install.

https://www.apache.org/dyn/closer.lua/hbase/

Example 1. Example hbase-site.xml for Standalone HBase

<configuration>

E <property>

E <namehbase.rootdir </name>

E <value>file://lhome/testuser/hbase </value>

E </property>

E <property>

E <namehbase.zookeeper.property.dataDir </name>

E <value>/home/testuser/zookeeper </value>

E </property>

E <property>

E <namehbase.unsafe.stream.capability.enforce ~ </name>

E <value>false </value>

E <description>

E Controls whether HBase will check for stream capabilities (hflush/hsync).
E Disable this if you intend to run on LocalFileSystem, denoted by a
rootdir

E with the file://' scheme, but be mindful of the NOTE below.

E WARNING: Setting this to false blinds you to potential data loss and
E inconsistent system state in the event of process and/or node failures.
If

E HBase is complaining of an inability to use hsync or hflush it's most
E likely not a false positive.

E </description>

E </property>

</configuration>

You do not need to create the HBase data directory. HBase will do this for you. If you create the
directory, HBase will attempt to do a migration, which is not what you want.

The hbase.rootdir in the above example points to a directory in the local
filesystem . The *file:/I' prefix is how we denote local filesystem. You should take

the WARNING present in the configuration example to heart. In standalone
mode HBase makes use of the local filesystem abstraction from the Apache
Hadoop project. That abstraction doesnOt provide the durability promises that
HBase needs to operate safely. This is fine for local development and testing
use cases where the cost of cluster failure is well contained. It is not
appropriate for production deployments; eventually you will lose data.

To home HBase on an existing instance of HDFS, set the hbase.rootdir to point at a directory up on
your instance: e.g. hdfs://namenode.example.org:8020/hbase . For more on this variant, see the
section below on Standalone HBase over HDFS.

1. The bin/start-hbase.sh script is provided as a convenient way to start HBase. Issue the command,

and if all goes well, a message is logged to standard output showing that HBase started
successfully. You can use the jps command to verify that you have one running process called
HMaster In standalone mode HBase runs all daemons within this single JVM, i.e. the HMaster, a
single HRegionServer, and the ZooKeeper daemon. Go to hitp://localhost:16010 to view the
HBase Web UL.

Java needs to be installed and available. If you get an error indicating that Java

is not installed, but it is on your system, perhaps in a non-standard location,
edit the conf/hbase-env.sh file and modify the JAVA HOMEtting to point to the
directory that contains bin/java on your system.

Procedure: Use HBase For the First Time

1. Connect to HBase.

Connect to your running instance of HBase using the hbase shell command, located in the bin/
directory of your HBase install. In this example, some usage and version information that is
printed when you start HBase Shell has been omitted. The HBase Shell prompt ends with a >
character.

$./bin/hbase shell
hbase(main):001:0>

2. Display HBase Shell Help Text.

Type help and press Enter, to display some basic usage information for HBase Shell, as well as
several example commands. Notice that table names, rows, columns all must be enclosed in
guote characters.

3. Create a table.

Use the create command to create a new table. You must specify the table name and the
ColumnFamily name.

hbase(main):001:0> create 'test’, 'cf’
0 row(s) in 0.4170 seconds

=> Hbase::Table - test

4. List Information About your Table

Use the list command to confirm your table exists

http://localhost:16010

hbase(main):002:0> list 'test'
TABLE

test

1 row(s) in 0.0180 seconds

=> ["test"]

Now use the describe command to see details, including configuration defaults

hbase(main):003:0> describe 'test'

Table test is ENABLED

test

COLUMN FAMILIES DESCRIPTION

{NAME => 'cf', VERSIONS =>"1', EVICT_BLOCKS ON_CLOSE => 'false’,

NEW_VERSION BEHAVIOR => 'false', KEEP_DELETED_ CELLS =>'FALSE', CACHE_DATA_ON_WRIT
=>

'false’, DATA_BLOCK_ENCODING =>'NONE', TTL => 'FOREVER', MIN_VERSIONS =>'0',
REPLICATION_SCOPE =>'0', BLOOMFILTER =>'ROW', CACHE_INDEX_ON_WRITE =>'f

alse', IN_MEMORY => ‘false’', CACHE_BLOOMS_ON_WRITE => 'false’,

PREFETCH_BLOCKS ON_OPEN => 'false’, COMPRESSION =>'NONE', BLOCKCACHE => 'true’,
BLOCKSIZE

E=>'65536'}

1 row(s)

Took 0.9998 seconds

5. Put data into your table.

To put data into your table, use the put command.

hbase(main):003:0> put 'test’, 'rowl’, 'cf:a’, 'valuel'
0 row(s) in 0.0850 seconds

hbase(main):004:0> put 'test’, 'row2', 'cf:b’, 'value2'
0 row(s) in 0.0110 seconds

hbase(main):005:0> put 'test’, 'row3’, 'cf:c’, 'value3'
0 row(s) in 0.0100 seconds

Here, we insert three values, one at a time. The first insert is at rowl, column cf:a , with a value
of valuel. Columns in HBase are comprised of a column family prefix, cf in this example,
followed by a colon and then a column qualifier suffix, ain this case.

6. Scan the table for all data at once.

One of the ways to get data from HBase is to scan. Use the scan command to scan the table for
data. You can limit your scan, but for now, all data is fetched.

hbase(main):006:0> scan 'test'

ROW COLUMN+CELL

Erowl column=cf:a, timestamp=1421762485768,
value=valuel

Erow2 column=cf:b, timestamp=1421762491785,
value=value2

Erow3 column=cf:c, timestamp=1421762496210,

value=value3
3 row(s) in 0.0230 seconds

7. Get a single row of data.
To get a single row of data at a time, use the get command.
hbase(main):007:0> get 'test’, 'rowl'

COLUMN CELL
Ecf:a timestamp=1421762485768, value=valuel

1 row(s) in 0.0350 seconds

8. Disable a table.

If you want to delete a table or change its settings, as well as in some other situations, you need
to disable the table first, using the disable command. You can re-enable it using the enable
command.

hbase(main):008:0> disable ‘test'
0 row(s) in 1.1820 seconds

hbase(main):009:0> enable 'test'
0 row(s) in 0.1770 seconds

Disable the table again if you tested the enable command above:

hbase(main):010:0> disable 'test'
0 row(s) in 1.1820 seconds

9. Drop the table.

To drop (delete) a table, use the drop command.

hbase(main):011:0> drop 'test'
0 row(s) in 0.1370 seconds

10. Exit the HBase Shell.

To exit the HBase Shell and disconnect from your cluster, use the quit command. HBase is still
running in the background.

Procedure: Stop HBase

1. In the same way that the bin/start-hbase.sh script is provided to conveniently start all HBase
daemons, the bin/stop-hbase.sh script stops them.

$./bin/stop-hbase.sh
stopping hbase....................

$

2. After issuing the command, it can take several minutes for the processes to shut down. Use the
jps to be sure that the HMaster and HRegionServer processes are shut down.

The above has shown you how to start and stop a standalone instance of HBase. In the next sections
we give a quick overview of other modes of hbase deploy.

2.3. Pseudo-Distributed Local Install

After working your way through quickstart standalone mode, you can re-configure HBase to run in
pseudo-distributed mode. Pseudo-distributed mode means that HBase still runs completely on a
single host, but each HBase daemon (HMaster, HRegionServer, and ZooKeeper) runs as a separate
process: in standalone mode all daemons ran in one jvm process/instance. By default, unless you
configure the hbase.rootdir property as described in quickstart , your data is still stored in /tmp/. In
this walk-through, we store your data in HDFS instead, assuming you have HDFS available. You can

skip the HDFS configuration to continue storing your data in the local filesystem.

Hadoop Configuration

This procedure assumes that you have configured Hadoop and HDFS on your local
system and/or a remote system, and that they are running and available. It also
assumes you are using Hadoop 2. The guide on Setting up a Single Node Cluster in
the Hadoop documentation is a good starting point.

1. Stop HBase if it is running.

If you have just finished quickstart and HBase is still running, stop it. This procedure will create
a totally new directory where HBase will store its data, so any databases you created before will
be lost.

2. Configure HBase.

Edit the hbase-site.xml configuration. First, add the following property which directs HBase to
run in distributed mode, with one JVM instance per daemon.

10

https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html

<property>

E <namehbase.cluster.distributed </name>
E <value>true </value>

</property>

Next, change the hbase.rootdir from the local filesystem to the address of your HDFS instance,
using the hdfs://// URI syntax. In this example, HDFS is running on the localhost at port 8020.
Be sure to either remove the entry for ~ hbase.unsafe.stream.capability.enforce or set it to true.

<property>

E <namehbase.rootdir </name>

E <value>hdfs://localhost:8020/hbase </value>
</property>

You do not need to create the directory in HDFS. HBase will do this for you. If you create the
directory, HBase will attempt to do a migration, which is not what you want.
3. Start HBase.

Use the bin/start-hbase.sh command to start HBase. If your system is configured correctly, the
jps command should show the HMaster and HRegionServer processes running.

4. Check the HBase directory in HDFS.

If everything worked correctly, HBase created its directory in HDFS. In the configuration above,
it is stored in /nhbase/ on HDFS. You can use the hadoop fs command in HadoopOs bin/ directory to
list this directory.

$./bin/hadoop fs -Is /hbase
Found 7 items

drwxr-xr-x - hbase users 0 2014-06-25 18:58 /hbase/.tmp
drwxr-xr-x - hbase users 0 2014-06-25 21:49 /hbase/WALs
drwxr-xr-x - hbase users 0 2014-06-25 18:48 /hbase/corrupt
drwxr-xr-x - hbase users 0 2014-06-25 18:58 /hbase/data
-rw-r--r-- 3 hbase users 42 2014-06-25 18:41 /hbase/hbase.id
-rw-r--r-- 3 hbase users 7 2014-06-25 18:41 /hbase/hbase.version
drwxr-xr-x - hbase users 0 2014-06-25 21:49 /hbase/oldWALs

5. Create a table and populate it with data.

You can use the HBase Shell to create a table, populate it with data, scan and get values from it,
using the same procedure as in shell exercises .

6. Start and stop a backup HBase Master (HMaster) server.

11

12

Running multiple HMaster instances on the same hardware does not make
sense in a production environment, in the same way that running a pseudo-
distributed cluster does not make sense for production. This step is offered for
testing and learning purposes only.

The HMaster server controls the HBase cluster. You can start up to 9 backup HMaster servers,
which makes 10 total HMasters, counting the primary. To start a backup HMaster, use the local-
master-backup.sh. For each backup master you want to start, add a parameter representing the
port offset for that master. Each HMaster uses two ports (16000 and 16010 by default). The port
offset is added to these ports, so using an offset of 2, the backup HMaster would use ports 16002
and 16012. The following command starts 3 backup servers using ports 16002/16012,
16003/16013, and 16005/16015.

$./bin/local-master-backup.sh start 2 3 5

To kill a backup master without killing the entire cluster, you need to find its process ID (PID).

The PID is stored in a file with a name like /tmp/hbase-USER-X-master.pid. The only contents of
the file is the PID. You can use the kill -9 command to Kill that PID. The following command
will kill the master with port offset 1, but leave the cluster running:

$ cat /tmp/hbase-testuser-1-master.pid |xargs kill -9

Start and stop additional RegionServers

The HRegionServer manages the data in its StoreFiles as directed by the HMaster. Generally, one
HRegionServer runs per node in the cluster. Running multiple HRegionServers on the same
system can be useful for testing in pseudo-distributed mode. The local-regionservers.sh
command allows you to run multiple RegionServers. It works in a similar way to the local-
master-backup.sh command, in that each parameter you provide represents the port offset for

an instance. Each RegionServer requires two ports, and the default ports are 16020 and 16030.
Since HBase version 1.1.0, HMaster doesnOt use region server ports, this leaves 10 ports (16020 to
16029 and 16030 to 16039) to be used for RegionServers. For supporting additional
RegionServers, set environment variables HBASE_RS BASE_PORT and
HBASE_RS INFO_BASE_PORT to appropriate values before running script local-
regionservers.sh . e.g. With values 16200 and 16300 for base ports, 99 additional RegionServers
can be supported, on a server. The following command starts four additional RegionServers,
running on sequential ports starting at 16022/16032 (base ports 16020/16030 plus 2).

$.bin/local-regionservers.sh start 234 5

To stop a RegionServer manually, use the local-regionservers.sh command with the stop
parameter and the offset of the server to stop.

$.bin/local-regionservers.sh stop 3

8. Stop HBase.

You can stop HBase the same way as in the quickstart procedure, using the bin/stop-hbase.sh
command.

2.4. Advanced - Fully Distributed

In reality, you need a fully-distributed configuration to fully test HBase and to use it in real-world
scenarios. In a distributed configuration, the cluster contains multiple nodes, each of which runs
one or more HBase daemon. These include primary and backup Master instances, multiple
ZooKeeper nodes, and multiple RegionServer nodes.

This advanced quickstart adds two more nodes to your cluster. The architecture will be as follows:

Table 1. Distributed Cluster Demo Architecture

Node Name Master ZooKeeper RegionServer
node-a.example.com yes yes no
node-b.example.com backup yes yes
node-c.example.com no yes yes

This quickstart assumes that each node is a virtual machine and that they are all on the same
network. It builds upon the previous quickstart, Pseudo-Distributed Local Install , assuming that the
system you configured in that procedure is now node-a. Stop HBase on node-abefore continuing.

Be sure that all the nodes have full access to communicate, and that no firewall
! rules are in place which could prevent them from talking to each other. If you see
any errors like no route to host , check your firewall.

Procedure: Configure Passwordless SSH Access

node-a needs to be able to log into node-b and node-c (and to itself) in order to start the daemons.
The easiest way to accomplish this is to use the same username on all hosts, and configure
password-less SSH login from node-ato each of the others.

1. On node-a, generate a key pair.
While logged in as the user who will run HBase, generate a SSH key pair, using the following
command:

$ ssh-keygen -t rsa

If the command succeeds, the location of the key pair is printed to standard output. The default
name of the public key is id_rsa.pub.

2. Create the directory that will hold the shared keys on the other nodes.

On node-b and node-c, log in as the HBase user and create a .ssh/ directory in the userOs home

13

directory, if it does not already exist. If it already exists, be aware that it may already contain
other keys.

Copy the public key to the other nodes.

Securely copy the public key from node-ato each of the nodes, by using the scp or some other
secure means. On each of the other nodes, create a new file called .ssh/authorized_keys if it does
not already exist , and append the contents of the id_rsa.pub file to the end of it. Note that you
also need to do this for node-aitself.

$ cat id_rsa.pub >> ~/.ssh/authorized_keys

Test password-less login.

If you performed the procedure correctly, you should not be prompted for a password when
you SSH from node-ato either of the other nodes using the same username.

Since node-b will run a backup Master, repeat the procedure above, substituting node-b
everywhere you see node-a. Be sure not to overwrite your existing .ssh/authorized_keys files, but
concatenate the new key onto the existing file using the >>operator rather than the > operator.

Procedure: Prepare node-a

node-a will run your primary master and ZooKeeper processes, but no RegionServers. Stop the
RegionServer from starting on node-a.

1

14

Edit conf/regionservers and remove the line which contains localhost . Add lines with the
hostnames or IP addresses for node-band node-c.

Even if you did want to run a RegionServer on node-a, you should refer to it by the hostname the
other servers would use to communicate with it. In this case, that would be node-a.example.com
This enables you to distribute the configuration to each node of your cluster any hostname
conflicts. Save the file.

Configure HBase to use node-b as a backup master.

Create a new file in conf/ called backup-masters, and add a new line to it with the hostname for
node-b. In this demonstration, the hostname is node-b.example.com

Configure ZooKeeper

In reality, you should carefully consider your ZooKeeper configuration. You can find out more
about configuring ZooKeeper in zookeeper section. This configuration will direct HBase to start
and manage a ZooKeeper instance on each node of the cluster.

On node-ga, edit conf/hbase-site.xml and add the following properties.

<property>

E <namehbase.zookeeper.quorun¥/name>

E <value>node-a.example.com,node-b.example.com,node-c.example.corna/value>
</property>

<property>

E <namehbase.zookeeper.property.dataDir </name>

E <value>/usr/local/zookeeper </value>

</property>
4. Everywhere in your configuration that you have referred to node-a as localhost , change the
reference to point to the hostname that the other nodes will use to refer to node-a. In these

examples, the hostname is node-a.example.com

Procedure: Prepare node-band node-c

node-b will run a backup master server and a ZooKeeper instance.
1. Download and unpack HBase.

Download and unpack HBase to node-b, just as you did for the standalone and pseudo-
distributed quickstarts.

2. Copy the configuration files from node-ato node-b.and node-c.

Each node of your cluster needs to have the same configuration information. Copy the contents
of the conf/ directory to the conf/ directory on node-band node-c.

Procedure: Start and Test Your Cluster

1. Be sure HBase is not running on any node.

If you forgot to stop HBase from previous testing, you will have errors. Check to see whether
HBase is running on any of your nodes by using the jps command. Look for the processes
HMaster HRegionServer and HQuorumPeelf they exist, kill them.

2. Start the cluster.

On node-g, issue the start-hbase.sh command. Your output will be similar to that below.

15

$ bin/start-hbase.sh

node-c.example.com: starting zookeeper, logging to /home/hbuser/hbase-0.98.3-
hadoop2/bin/../logs/hbase-hbuser-zookeeper-node-c.example.com.out
node-a.example.com: starting zookeeper, logging to /home/hbuser/hbase-0.98.3-
hadoop2/bin/../logs/hbase-hbuser-zookeeper-node-a.example.com.out
node-b.example.com: starting zookeeper, logging to /home/hbuser/hbase-0.98.3-
hadoop2/bin/../logs/hbase-hbuser-zookeeper-node-b.example.com.out

starting master, logging to /home/hbuser/hbase-0.98.3-hadoop2/bin/../logs/hbase-
hbuser-master-node-a.example.com.out

node-c.example.com: starting regionserver, logging to /nome/hbuser/hbase-0.98.3-
hadoop2/bin/../logs/hbase-hbuser-regionserver-node-c.example.com.out
node-b.example.com: starting regionserver, logging to /home/hbuser/hbase-0.98.3-
hadoop2/bin/../logs/hbase-hbuser-regionserver-node-b.example.com.out
node-b.example.com: starting master, logging to /home/hbuser/hbase-0.98.3-
hadoop2/bin/../logs/hbase-hbuser-master-nodeb.example.com.out

ZooKeeper starts first, followed by the master, then the RegionServers, and finally the backup
masters.

3. Verify that the processes are running.

16

On each node of the cluster, run the jps command and verify that the correct processes are
running on each server. You may see additional Java processes running on your servers as well,
if they are used for other purposes.

node-ajps Output

$ jps

20355 Jps

20071 HQuorumPeer
20137 HMaster

node-bjps Output

$jps

15930 HRegionServer
16194 Jps

15838 HQuorumPeer
16010 HMaster

node-c jps Output

$jps

13901 Jps

13639 HQuorumPeer
13737 HRegionServer

ZooKeeper Process Name

The HQuorumPeeprocess is a ZooKeeper instance which is controlled and
started by HBase. If you use ZooKeeper this way, it is limited to one instance
per cluster node and is appropriate for testing only. If ZooKeeper is run outside

of HBase, the process is called QuorumPeer For more about ZooKeeper
configuration, including using an external ZooKeeper instance with HBase, see

zookeeper section.
4. Browse to the Web UlI.

Web Ul Port Changes
- Web Ul Port Changes

In HBase newer than 0.98.x, the HTTP ports used by the HBase Web Ul changed from 60010 for
the Master and 60030 for each RegionServer to 16010 for the Master and 16030 for the
RegionServer.

If everything is set up correctly, you should be able to connect to the Ul for the Master
http://node-a.example.com:16010/ or the secondary master at http://node-b.example.com:16010/
using a web browser. If you can connect via localhost but not from another host, check your
firewall rules. You can see the web Ul for each of the RegionServers at port 16030 of their IP
addresses, or by clicking their links in the web Ul for the Master.

5. Test what happens when nodes or services disappear.

With a three-node cluster you have configured, things will not be very resilient. You can still test
the behavior of the primary Master or a RegionServer by Kkilling the associated processes and
watching the logs.

2.5. Where to go next

The next chapter, configuration , gives more information about the different HBase run modes,
system requirements for running HBase, and critical configuration areas for setting up a
distributed HBase cluster.

17

http://node-a.example.com:16010/
http://node-b.example.com:16010/

Apache HBase Configuration

This chapter expands upon the Getting Started chapter to further explain configuration of Apache
HBase. Please read this chapter carefully, especially the Basic Prerequisites to ensure that your

HBase testing and deployment goes smoothly. Familiarize yourself with
Expectations as well.

18

Support and Testing

Chapter 3. Configuration Files

Apache HBase uses the same configuration system as Apache Hadoop. All configuration files are
located in the conf/ directory, which needs to be kept in sync for each node on your cluster.

HBase Configuration File Descriptions
backup-masters

Not present by default. A plain-text file which lists hosts on which the Master should start a
backup Master process, one host per line.

hadoop-metrics2-hbase.properties

Used to connect HBase HadoopOs Metrics2 framework. See the Hadoop Wiki entry for more
information on Metrics2. Contains only commented-out examples by default.

hbase-env.cmd and hbase-env.sh

Script for Windows and Linux / Unix environments to set up the working environment for
HBase, including the location of Java, Java options, and other environment variables. The file
contains many commented-out examples to provide guidance.

hbase-policy.xml

The default policy configuration file used by RPC servers to make authorization decisions on
client requests. Only used if HBase security is enabled.

hbase-site.xml

The main HBase configuration file. This file specifies configuration options which override
HBaseOs default configuration. You can view (but do not edit) the default configuration file at
docs/hbase-default.xml . You can also view the entire effective configuration for your cluster
(defaults and overrides) in the HBase Configuration tab of the HBase Web UI.

log4j.properties

Configuration file for HBase logging via log4j .

regionservers

A plain-text file containing a list of hosts which should run a RegionServer in your HBase cluster.

By default this file contains the single entry localhost . It should contain a list of hostnames or IP
addresses, one per line, and should only contain localhost if each node in your cluster will run a
RegionServer on its localhost interface.

Checking XML Validity

When you edit XML, it is a good idea to use an XML-aware editor to be sure that

" your syntax is correct and your XML is well-formed. You can also use the xmllint
utility to check that your XML is well-formed. By default, xmllint re-flows and
prints the XML to standard output. To check for well-formedness and only print
output if errors exist, use the command xmllint -noout filename.xml

19

https://wiki.apache.org/hadoop/HADOOP-6728-MetricsV2

20

Keep Configuration In Sync Across the Cluster

When running in distributed mode, after you make an edit to an HBase
configuration, make sure you copy the contents of the conf/ directory to all nodes
of the cluster. HBase will not do this for you. Use rsync, scp, or another secure
mechanism for copying the configuration files to your nodes. For most
configurations, a restart is needed for servers to pick up changes. Dynamic
configuration is an exception to this, to be described later below.

Chapter 4. Basic Prerequisites

This section lists required services and some required system configuration.

Java

The following table summarizes the recommendation of the HBase community wrt deploying on
various Java versions. A $ symbol is meant to indicate a base level of testing and willingness to

help diagnose and address issues you might run into. Similarly, an entry of

% or & generally means

that should you run into an issue the community is likely to ask you to change the Java
environment before proceeding to help. In some cases, specific guidance on limitations (e.qg.
whether compiling / unit tests work, specific operational issues, etc) will also be noted.

Long Term Support JDKs are recommended

HBase recommends downstream users rely on JDK releases that are marked as

Long Term Supported (LTS) either from the OpenJDK project or vendors. As of

March 2018 that means Java 8 is the only applicable version and that the next
likely version to see testing will be Java 11 near Q3 2018.

Table 2. Java support by release line

HBase Version

2.0+

1.2+

JDK 7

&

Operating System Utilities

ssh

JDK 8

JDK 9 (Non-
LTS)

%
HBASE-20264

%
HBASE-20264

HBase will neither build nor run with Java 6.

You must set JAVA HOME each node of your cluster.
mechanism to do this.

JDK 10 (Non-
LTS)

%
HBASE-20264

%
HBASE-20264

JDK 11
%
HBASE-21110

%
HBASE-21110

hbase-env.sh provides a handy

HBase uses the Secure Shell (ssh) command and utilities extensively to communicate between

cluster nodes. Each server in the cluster must be running

ssh so that the Hadoop and HBase

daemons can be managed. You must be able to connect to all nodes via SSH, including the local
node, from the Master as well as any backup Master, using a shared key rather than a password.

You can see the basic methodology for such a set-up in Linux or Unix systems at "

Procedure:

Configure Passwordless SSH Access ". If your cluster nodes use OS X, see the section, SSH: Setting

up Remote Desktop and Enabling Self-Login

DNS

on the Hadoop wiki.

HBase uses the local hostname to self-report its IP address.

NTP

21

https://issues.apache.org/jira/browse/HBASE-20264
https://issues.apache.org/jira/browse/HBASE-20264
https://issues.apache.org/jira/browse/HBASE-21110
https://issues.apache.org/jira/browse/HBASE-20264
https://issues.apache.org/jira/browse/HBASE-20264
https://issues.apache.org/jira/browse/HBASE-21110
https://wiki.apache.org/hadoop/Running_Hadoop_On_OS_X_10.5_64-bit_%28Single-Node_Cluster%29
https://wiki.apache.org/hadoop/Running_Hadoop_On_OS_X_10.5_64-bit_%28Single-Node_Cluster%29

The clocks on cluster nodes should be synchronized. A small amount of variation is acceptable,

but larger amounts of skew can cause erratic and unexpected behavior. Time synchronization is

one of the first things to check if you see unexplained problems in your cluster. It is
recommended that you run a Network Time Protocol (NTP) service, or another time-
synchronization mechanism on your cluster and that all nodes look to the same service for time
synchronization. See the Basic NTP Configuration at The Linux Documentation Project (TLDP) to
set up NTP.

Limits on Number of Files and Processes (ulimit)

Apache HBase is a database. It requires the ability to open a large number of files at once. Many
Linux distributions limit the number of files a single user is allowed to open to 1024 (or 256 on
older versions of OS X). You can check this limit on your servers by running the command ulimit
-n when logged in as the user which runs HBase. See the Troubleshooting section for some of the
problems you may experience if the limit is too low. You may also notice errors such as the
following:

2010-04-06 03:04:37,542 INFO org.apache.hadoop.hdfs.DFSClient: Exception
increateBlockOutputStream java.io.EOFEXxception

2010-04-06 03:04:37,542 INFO org.apache.hadoop.hdfs.DFSClient: Abandoning block
blk_-6935524980745310745_1391901

It is recommended to raise the ulimit to at least 10,000, but more likely 10,240, because the value
is usually expressed in multiples of 1024. Each ColumnFamily has at least one StoreFile, and
possibly more than six StoreFiles if the region is under load. The number of open files required
depends upon the number of ColumnFamilies and the number of regions. The following is a
rough formula for calculating the potential number of open files on a RegionServer.

Calculate the Potential Number of Open Files

(StoreFiles per ColumnFamily) x (regions per RegionServer)

For example, assuming that a schema had 3 ColumnFamilies per region with an average of 3
StoreFiles per ColumnFamily, and there are 100 regions per RegionServer, the JVM will open 3*
3 * 100 = 900 file descriptors, not counting open JAR files, configuration files, and others.
Opening a file does not take many resources, and the risk of allowing a user to open too many

files is minimal.

Another related setting is the number of processes a user is allowed to run at once. In Linux and
Unix, the number of processes is set using the ulimit -u command. This should not be confused
with the nproc command, which controls the number of CPUs available to a given user. Under
load, a ulimit -u that is too low can cause OutOfMemoryError exceptions.

Configuring the maximum number of file descriptors and processes for the user who is running
the HBase process is an operating system configuration, rather than an HBase configuration. It is
also important to be sure that the settings are changed for the user that actually runs HBase. To
see which user started HBase, and that userOs ulimit configuration, look at the first line of the
HBase log for that instance.

22

http://www.tldp.org/LDP/sag/html/basic-ntp-config.html

Example 2. ulimit Settings on Ubuntu

To configure ulimit settings on Ubuntu, edit letc/security/limits.conf , which is a space-
delimited file with four columns. Refer to the man page for limits.conf for details about the
format of this file. In the following example, the first line sets both soft and hard limits for

the number of open files (nofile) to 32768 for the operating system user with the username
hadoop. The second line sets the number of processes to 32000 for the same user.

hadoop - nofile 32768
hadoop - nproc 32000

The settings are only applied if the Pluggable Authentication Module (PAM) environment is
directed to use them. To configure PAM to use these limits, be sure that the
/etc/pam.d/common-session file contains the following line:

session required pam_limits.so

Linux Shell
All of the shell scripts that come with HBase rely on the GNU Bash shell.

Windows

Running production systems on Windows machines is not recommended.

4.1. Hadoop

The following table summarizes the versions of Hadoop supported with each version of HBase.
Older versions not appearing in this table are considered unsupported and likely missing necessary
features, while newer versions are untested but may be suitable.

Based on the version of HBase, you should select the most appropriate version of Hadoop. You can

use Apache Hadoop, or a vendorOs distribution of Hadoop. No distinction is made here. See the

Hadoop wiki for information about vendors of Hadoop.

Hadoop 2.x is recommended.

Hadoop 2.x is faster and includes features, such as short-circuit reads (see
Leveraging local data), which will help improve your HBase random read profile.
Hadoop 2.x also includes important bug fixes that will improve your overall HBase
experience. HBase does not support running with earlier versions of Hadoop. See
the table below for requirements specific to different HBase versions.

Hadoop 3.x is still in early access releases and has not yet been sufficiently tested
by the HBase community for production use cases.

Use the following legend to interpret this table:

23

http://www.gnu.org/software/bash
https://hadoop.apache.org
https://wiki.apache.org/hadoop/Distributions%20and%20Commercial%20Support
https://wiki.apache.org/hadoop/Distributions%20and%20Commercial%20Support

Hadoop version support matrix

¥ $ = Tested to be fully-functional

¥ & = Known to not be fully-functional

¥ % = Not tested, may/may-not function

Hadoop-2.4.x
Hadoop-2.5.x
Hadoop-2.6.0
Hadoop-2.6.1+
Hadoop-2.7.0
Hadoop-2.7.1+
Hadoop-2.8.[0-1]
Hadoop-2.8.2
Hadoop-2.8.3+
Hadoop-2.9.0
Hadoop-2.9.1+
Hadoop-3.0.[0-2]
Hadoop-3.0.3+
Hadoop-3.1.0
Hadoop-3.1.1+

HBase-1.2.x,
HBase-1.3.x

HBase-1.4.x

Hadoop Pre-2.6.1 and JDK 1.8 Kerberos

HBase-2.0.x HBase-2.1.x
& &
& &
& &
$ &
& &
$ $
& &
% %
$ $
& &
% %
& &
$ $
& &
$ $

When using pre-2.6.1 Hadoop versions and JDK 1.8 in a Kerberos environment,
HBase server can fail and abort due to Kerberos keytab relogin error. Late version

of JDK 1.7 (1.7.0_80) has the problem too. Refer to HADOOP-10786 for additional
details. Consider upgrading to Hadoop 2.6.1+ in this case.

Hadoop 2.6.x

Hadoop distributions based on the 2.6.x line

must have HADOOP-11710 applied if

you plan to run HBase on top of an HDFS Encryption Zone. Failure to do so will
result in cluster failure and data loss. This patch is present in Apache Hadoop
releases 2.6.1+.

24

https://issues.apache.org/jira/browse/HADOOP-10786
https://issues.apache.org/jira/browse/HADOOP-11710

Hadoop 2.y.0 Releases

Starting around the time of Hadoop version 2.7.0, the Hadoop PMC got into the
habit of calling out new minor releases on their major version 2 release line as not

n stable / production ready. As such, HBase expressly advises downstream users to
avoid running on top of these releases. Note that additionally the 2.8.1 release was
given the same caveat by the Hadoop PMC. For reference, see the release
announcements for Apache Hadoop 2.7.0 , Apache Hadoop 2.8.0 , Apache Hadoop
2.8.1, and Apache Hadoop 2.9.0 .

Hadoop 3.0.x Releases

Hadoop distributions that include the Application Timeline Service feature may

" cause unexpected versions of HBase classes to be present in the application
classpath. Users planning on running MapReduce applications with HBase should
make sure that YARN-7190 is present in their YARN service (currently fixed in
2.9.1+ and 3.1.0+).

Hadoop 3.1.0 Release

] The Hadoop PMC called out the 3.1.0 release as not stable / production ready. As
such, HBase expressly advises downstream users to avoid running on top of this
release. For reference, see the release announcement for Hadoop 3.1.0

Replace the Hadoop Bundled With HBase!

Because HBase depends on Hadoop, it bundles Hadoop jars under its lib directory.
The bundled jars are ONLY for use in standalone mode. In distributed mode, it is
critical that the version of Hadoop that is out on your cluster match what is under
HBase. Replace the hadoop jars found in the HBase lib directory with the
equivalent hadoop jars from the version you are running on your cluster to avoid
version mismatch issues. Make sure you replace the jars under HBase across your
whole cluster. Hadoop version mismatch issues have various manifestations.
Check for mismatch if HBase appears hung.

4.1.1. dfs.datanode.max.transfer.threads

An HDFS DataNode has an upper bound on the number of files that it will serve at any one time.

Before doing any loading, make sure you have configured HadoopOs conf/hdfs-site.xml , setting the

dfs.datanode.max.transfer.threads value to at least the following:

<property>

E <namedfs.datanode.max.transfer.threads </name>
E <value>4096</value>

</property>

Be sure to restart your HDFS after making the above configuration.

Not having this configuration in place makes for strange-looking failures. One manifestation is a

25

https://s.apache.org/hadoop-2.7.0-announcement
https://s.apache.org/hadoop-2.8.0-announcement
https://s.apache.org/hadoop-2.8.1-announcement
https://s.apache.org/hadoop-2.8.1-announcement
https://s.apache.org/hadoop-2.9.0-announcement
https://issues.apache.org/jira/browse/YARN-7190
https://s.apache.org/hadoop-3.1.0-announcement

complaint about missing blocks. For example:

10/12/08 20:10:31 INFO hdfs.DFSClient: Could not obtain block

E BIK_ XXXXXXXX XXX XXX XXXXXXXX_YYYYYYYY from any node: java.io.|IOException: No
live nodes

E contain current block. Will get new block locations from namenode and

retry...

See also casestudies.max.transfer.threads and note that this property was previously known as
dfs.datanode.max.xcievers (e.g.Hadoop HDFS: Deceived by Xciever).

4.2. ZooKeeper Requirements

ZooKeeper 3.4.x is required.

26

http://ccgtech.blogspot.com/2010/02/hadoop-hdfs-deceived-by-xciever.html

Chapter 5. HBase run modes: Standalone
and Distributed

HBase has two run modes: standalone and distributed . Out of the box, HBase runs in standalone

mode. Whatever your mode, you will need to configure HBase by editing files in the HBase conf
directory. At a minimum, you must edit conf/hbase-env.sh to tell HBase which java to use. In this
file you set HBase environment variables such as the heapsize and other options for the JVM the

preferred location for log files, etc. Set JAVA_HOME to point at the root of your java install.

5.1. Standalone HBase

This is the default mode. Standalone mode is what is described in the quickstart section. In
standalone mode, HBase does not use HDFS!N!it uses the local filesystem instead!N'and it runs all
HBase daemons and a local ZooKeeper all up in the same JVM. ZooKeeper binds to a well known
port so clients may talk to HBase.

5.1.1. Standalone HBase over HDFS

A sometimes useful variation on standalone hbase has all daemons running inside the one JVM but
rather than persist to the local filesystem, instead they persist to an HDFS instance.

You might consider this profile when you are intent on a simple deploy profile, the loading is light,
but the data must persist across node comings and goings. Writing to HDFS where data is replicated
ensures the latter.

To configure this standalone variant, edit your hbase-site.xml setting hbase.rootdir to point at a
directory in your HDFS instance but then set hbase.cluster.distributed to false. For example:

<configuration>

E <property>

E <namehbase.rootdir </name>

E <value>hdfs://namenode.example.org:8020/hbase </value>
E </property>

E <property>

E <namehbase.cluster.distributed </name>

E <value>false </value>

E </property>

</configuration>

5.2. Distributed

Distributed mode can be subdivided into distributed but all daemons run on a single node!Nla.k.a.
pseudo-distributed !Nland fully-distributed where the daemons are spread across all nodes in the
cluster. The pseudo-distributed vs. fully-distributed nomenclature comes from Hadoop.

Pseudo-distributed mode can run against the local filesystem or it can run against an instance of

27

the Hadoop Distributed File System (HDFS). Fully-distributed mode can ONLY run on HDFS. See the
Hadoop documentation for how to set up HDFS. A good walk-through for setting up HDFS on
Hadoop 2 can be found at http://www.alexjf.net/blog/distributed-systems/hadoop-yarn-installation-
definitive-guide

5.2.1. Pseudo-distributed

Pseudo-Distributed Quickstart

I A quickstart has been added to the quickstart chapter. See quickstart-pseudo .
Some of the information that was originally in this section has been moved there.

A pseudo-distributed mode is simply a fully-distributed mode run on a single host. Use this HBase
configuration for testing and prototyping purposes only. Do not use this configuration for
production or for performance evaluation.

5.3. Fully-distributed

By default, HBase runs in standalone mode. Both standalone mode and pseudo-distributed mode
are provided for the purposes of small-scale testing. For a production environment, distributed
mode is advised. In distributed mode, multiple instances of HBase daemons run on multiple servers
in the cluster.

Just as in pseudo-distributed mode, a fully distributed configuration requires that you set the
hbase.cluster.distributed property to true . Typically, the hbase.rootdir is configured to point to a
highly-available HDFS filesystem.

In addition, the cluster is configured so that multiple cluster nodes enlist as RegionServers,
ZooKeeper QuorumPeers, and backup HMaster servers. These configuration basics are all
demonstrated in quickstart-fully-distributed

Distributed RegionServers

Typically, your cluster will contain multiple RegionServers all running on different servers, as well

as primary and backup Master and ZooKeeper daemons. The conf/regionservers file on the master
server contains a list of hosts whose RegionServers are associated with this cluster. Each host is on

a separate line. All hosts listed in this file will have their RegionServer processes started and
stopped when the master server starts or stops.

ZooKeeper and HBase

See the ZooKeeper section for ZooKeeper setup instructions for HBase.

28

https://hadoop.apache.org/docs/current/
http://www.alexjf.net/blog/distributed-systems/hadoop-yarn-installation-definitive-guide
http://www.alexjf.net/blog/distributed-systems/hadoop-yarn-installation-definitive-guide

Example 3. Example Distributed HBase Cluster

This is a bare-bones conf/hbase-site.xml for a distributed HBase cluster. A cluster that is used
for real-world work would contain more custom configuration parameters. Most HBase
configuration directives have default values, which are used unless the value is overridden in

the hbase-site.xml. See 'Configuration Files " for more information.

<configuration>

E <property>

E <namehbase.rootdir </name>

E <value>hdfs://namenode.example.org:8020/hbase </value>
E </property>

E <property>

E <namehbase.cluster.distributed </name>

E <value>true </value>

E </property>

E <property>

E <namehbase.zookeeper.quorums/name>

E <value>node-a.example.com,node-b.example.com,node-c.example.coms/value>
E </property>

</configuration>

This is an example conf/regionservers file, which contains a list of nodes that should run a
RegionServer in the cluster. These nodes need HBase installed and they need to use the same
contents of the conf/ directory as the Master server

node a. example com
node b. example com
node c. example com

This is an example conf/backup-masters file, which contains a list of each node that should run
a backup Master instance. The backup Master instances will sit idle unless the main Master
becomes unavailable.

node b. example com
node c. example com

Distributed HBase Quickstart

See quickstart-fully-distributed for a walk-through of a simple three-node cluster configuration
with multiple ZooKeeper, backup HMaster, and RegionServer instances.

Procedure: HDFS Client Configuration

1. Of note, if you have made HDFS client configuration changes on your Hadoop cluster, such as
configuration directives for HDFS clients, as opposed to server-side configurations, you must
use one of the following methods to enable HBase to see and use these configuration changes:

. Add a pointer to your HADOOP_CONFtdiRe HBASE CLASSPémitonment variable in hbase-

env.sh.

. Add a copy of hdfs-sitexml (or hadoop-site.xml) or, better, symlinks, under

${HBASE_HOMEJ}/conf, or

. if only a small set of HDFS client configurations, add them to hbase-site.xml .

An example of such an HDFS client configuration is dfs.replication . If for example, you want to
run with a replication factor of 5, HBase will create files with the default of 3 unless you do the
above to make the configuration available to HBase.

30

Chapter 6. Running and Confirming Your
Installation

Make sure HDFS is running first. Start and stop the Hadoop HDFS daemons by running bin/start-
hdfs.sh over in the HADOOP_HdIivietory. You can ensure it started properly by testing the put and
get of files into the Hadoop filesystem. HBase does not normally use the MapReduce or YARN
daemons. These do not need to be started.

If you are managing your own ZooKeeper, start it and confirm itOs running, else HBase will start up
ZooKeeper for you as part of its start process.

Start HBase with the following command:
bin/start-hbase.sh

Run the above from the HBASE_HOditEctory.

You should now have a running HBase instance. HBase logs can be found in the logs subdirectory.
Check them out especially if HBase had trouble starting.

HBase also puts up a Ul listing vital attributes. By default itOs deployed on the Master host at port
16010 (HBase RegionServers listen on port 16020 by default and put up an informational HTTP
server at port 16030). If the Master is running on a host named master.example.org on the default
port, point your browser at http://master.example.org:16010 to see the web interface.

Once HBase has started, see the shell exercises section for how to create tables, add data, scan your
insertions, and finally disable and drop your tables.

To stop HBase after exiting the HBase shell enter

$./bin/stop-hbase.sh
stopping hbase...............

Shutdown can take a moment to complete. It can take longer if your cluster is comprised of many
machines. If you are running a distributed operation, be sure to wait until HBase has shut down
completely before stopping the Hadoop daemons.

31

Chapter 7. Default Configuration

7.1. hbase-site.xm|l and hbase-default.xml

Just as in Hadoop where you add site-specific HDFS configuration to the hdfs-site.xml file, for HBase,
site specific customizations go into the file conf/hbase-site.xml . For the list of configurable
properties, see hbase default configurations below or view the raw hbase-default.xml source file in
the HBase source code at src/main/resources .

Not all configuration options make it out to hbase-default.xml . Some configurations would only
appear in source code; the only way to identify these changes are through code review.

Currently, changes here will require a cluster restart for HBase to notice the change.

7.2. HBase Default Configuration

The documentation below is generated using the default hbase configuration file, hbase-default.xml ,
as source.

hbase.tmp.dir
Description
Temporary directory on the local filesystem. Change this setting to point to a location more
permanent than '/tmp’, the usual resolve for java.io.tmpdir, as the '/tmp’ directory is cleared on
machine restart.

Default
${java.io.tmpdir}/hbase-${user.name}

hbase.rootdir
Description
The directory shared by region servers and into which HBase persists. The URL should be ‘fully-
qualified' to include the filesystem scheme. For example, to specify the HDFS directory ‘'/hbase’
where the HDFS instanceOs namenode is running at namenode.example.org on port 9000, set this
value to: hdfs://namenode.example.org:9000/hbase. By default, we write to whatever
${hbase.tmp.dir} is set too!N!usually /tmp!N!so change this configuration or else all data will be
lost on machine restart.

Default
${hbase.tmp.dir}/hbase

hbase.cluster.distributed
Description

The mode the cluster will be in. Possible values are false for standalone mode and true for
distributed mode. If false, startup will run all HBase and ZooKeeper daemons together in the one
JVM.

Default
false

32

hbase.zookeeper.quorum
Description

Comma separated list of servers in the ZooKeeper ensemble (This config. should have been

named hbase.zookeeper.ensemble). For example,

"hostl.mydomain.com,host2.mydomain.com,host3.mydomain.com”. By default this is set to
localhost for local and pseudo-distributed modes of operation. For a fully-distributed setup, this

should be set to a full list of ZooKeeper ensemble servers. If HBASE_MANAGES ZK is set in

hbase-env.sh this is the list of servers which hbase will start/stop ZooKeeper on as part of cluster
start/stop. Client-side, we will take this list of ensemble members and put it together with the
hbase.zookeeper.property.clientPort config. and pass it into zookeeper constructor as the
connectString parameter.

Default
localhost

zookeeper.recovery.retry.maxsleeptime
Description

Max sleep time before retry zookeeper operations in milliseconds, a max time is needed here so
that sleep time wonOt grow unboundedly

Default
60000

hbase.local.dir
Description

Directory on the local filesystem to be used as a local storage.

Default
${hbase.tmp.dir}/local/

hbase.master.port
Description

The port the HBase Master should bind to.

Default
16000

hbase.master.info.port
Description

The port for the HBase Master web Ul. Set to -1 if you do not want a Ul instance run.

Default
16010

hbase.master.info.bindAddress
Description

The bind address for the HBase Master web Ul

Default

33

0.0.0.0

hbase.master.logcleaner.plugins

Description

A comma-separated list of BaseLogCleanerDelegate invoked by the LogsCleaner service. These
WAL cleaners are called in order, so put the cleaner that prunes the most files in front. To
implement your own BaseLogCleanerDelegate, just put it in HBaseOs classpath and add the fully
qualified class name here. Always add the above default log cleaners in the list.

Default

org.apache.hadoop.hbase.master.cleaner.TimeToLiveLogCleaner,org.apache.hadoop.hbase.master.c
leaner.TimeToLiveProcedureWALCleaner

hbase.master.logcleaner.ttl

Description

How long a WAL remain in the archive ({hbase.rootdir}/oldWALS) directory, after which it will
be cleaned by a Master thread. The value is in milliseconds.

Default
600000

hbase.master.procedurewalcleaner.ttl

Description

How long a Procedure WAL will remain in the archive directory, after which it will be cleaned
by a Master thread. The value is in milliseconds.

Default
604800000

hbase.master.hfilecleaner.plugins

Description

A comma-separated list of BaseHFileCleanerDelegate invoked by the HFileCleaner service. These
HFiles cleaners are called in order, so put the cleaner that prunes the most files in front. To
implement your own BaseHFileCleanerDelegate, just put it in HBaseOs classpath and add the fully
qualified class name here. Always add the above default log cleaners in the list as they will be
overwritten in hbase-site.xml.

Default
org.apache.hadoop.hbase.master.cleaner.TimeToLiveHFileCleaner

hbase.master.infoserver.redirect

Description

Whether or not the Master listens to the Master web Ul port (hbase.master.info.port) and
redirects requests to the web Ul server shared by the Master and RegionServer. Config. makes
sense when Master is serving Regions (not the default).

Default
true

hbase.master.fileSplitTimeout

34

Description

Splitting a region, how long to wait on the file-splitting step before aborting the attempt. Default:
600000. This setting used to be known as hbase.regionserver.fileSplitTimeout in hbase-1.x. Split
is now run master-side hence the rename (If a 'hbase.master.fileSplitTimeout' setting found, will
use it to prime the current 'hbase.master.fileSplitTimeout' Configuration.

Default
600000

hbase.regionserver.port
Description

The port the HBase RegionServer binds to.

Default
16020

hbase.regionserver.info.port
Description

The port for the HBase RegionServer web Ul Set to -1 if you do not want the RegionServer Ul to
run.

Default
16030

hbase.regionserver.info.bindAddress

Description

The address for the HBase RegionServer web Ul

Default
0.0.0.0

hbase.regionserver.info.port.auto
Description
Whether or not the Master or RegionServer Ul should search for a port to bind to. Enables
automatic port search if hbase.regionserver.info.port is already in use. Useful for testing, turned
off by default.

Default
false

hbase.regionserver.handler.count
Description
Count of RPC Listener instances spun up on RegionServers. Same property is used by the Master
for count of master handlers. Too many handlers can be counter-productive. Make it a multiple
of CPU count. If mostly read-only, handlers count close to cpu count does well. Start with twice
the CPU count and tune from there.

Default
30

hbase.ipc.server.callqueue.handler.factor

Description

Factor to determine the number of call queues. A value of 0 means a single queue shared
between all the handlers. A value of 1 means that each handler has its own queue.

Default
0.1

hbase.ipc.server.callqueue.read.ratio

Description

Split the call queues into read and write queues. The specified interval (which should be
between 0.0 and 1.0) will be multiplied by the number of call queues. A value of 0 indicate to not
split the call queues, meaning that both read and write requests will be pushed to the same set of
queues. A value lower than 0.5 means that there will be less read queues than write queues. A
value of 0.5 means there will be the same number of read and write queues. A value greater
than 0.5 means that there will be more read queues than write queues. A value of 1.0 means that
all the queues except one are used to dispatch read requests. Example: Given the total number of
call queues being 10 a read.ratio of 0 means that: the 10 queues will contain both read/write
requests. a read.ratio of 0.3 means that: 3 queues will contain only read requests and 7 queues
will contain only write requests. a read.ratio of 0.5 means that: 5 queues will contain only read
requests and 5 queues will contain only write requests. a read.ratio of 0.8 means that: 8 queues
will contain only read requests and 2 queues will contain only write requests. a read.ratio of 1
means that: 9 queues will contain only read requests and 1 queues will contain only write
requests.

Default
0

hbase.ipc.server.callqueue.scan.ratio

Description

Given the number of read call queues, calculated from the total number of call queues
multiplied by the callqueue.read.ratio, the scan.ratio property will split the read call queues into
small-read and long-read queues. A value lower than 0.5 means that there will be less long-read
queues than short-read queues. A value of 0.5 means that there will be the same number of
short-read and long-read queues. A value greater than 0.5 means that there will be more long-
read queues than short-read queues A value of 0 or 1 indicate to use the same set of queues for
gets and scans. Example: Given the total number of read call queues being 8 a scan.ratio of 0 or 1
means that: 8 queues will contain both long and short read requests. a scan.ratio of 0.3 means
that: 2 queues will contain only long-read requests and 6 queues will contain only short-read
requests. a scan.ratio of 0.5 means that: 4 queues will contain only long-read requests and 4
queues will contain only short-read requests. a scan.ratio of 0.8 means that: 6 queues will
contain only long-read requests and 2 queues will contain only short-read requests.

Default
0

hbase.regionserver.msginterval

36

Description

Interval between messages from the RegionServer to Master in milliseconds.

Default
3000

hbase.regionserver.logroll.period
Description

Period at which we will roll the commit log regardless of how many edits it has.

Default
3600000

hbase.regionserver.logroll.errors.tolerated
Description
The number of consecutive WAL close errors we will allow before triggering a server abort. A
setting of O will cause the region server to abort if closing the current WAL writer fails during
log rolling. Even a small value (2 or 3) will allow a region server to ride over transient HDFS
errors.

Default
2

hbase.regionserver.hlog.reader.impl
Description

The WAL file reader implementation.

Default
org.apache.hadoop.hbase.regionserver.wal.ProtobufLogReader

hbase.regionserver.hlog.writer.impl
Description

The WAL file writer implementation.

Default
org.apache.hadoop.hbase.regionserver.wal.ProtobufLogWriter

hbase.regionserver.global.memstore.size
Description
Maximum size of all memstores in a region server before new updates are blocked and flushes
are forced. Defaults to 40% of heap (0.4). Updates are blocked and flushes are forced until size of
all memstores in a region server hits hbase.regionserver.global.memstore.size.lower.limit. The
default value in this configuration has been intentionally left empty in order to honor the old
hbase.regionserver.global.memstore.upperLimit property if present.

Default

none

hbase.regionserver.global.memstore.size.lower.limit
Description

Maximum size of all memstores in a region server before flushes are forced. Defaults to 95% of

hbase.regionserver.global.memstore.size (0.95). A 100% value for this value causes the minimum
possible flushing to occur when updates are blocked due to memstore limiting. The default value
in this configuration has been intentionally left empty in order to honor the old
hbase.regionserver.global.memstore.lowerLimit property if present.

Default

none

hbase.systemtables.compacting.memstore.type

Description

Determines the type of memstore to be used for system tables like META, namespace tables etc.
By default NONE is the type and hence we use the default memstore for all the system tables. If
we need to use compacting memstore for system tables then set this property to BASIC/EAGER

Default
NONE

hbase.regionserver.optionalcacheflushinterval

Description

Maximum amount of time an edit lives in memory before being automatically flushed. Default 1
hour. Set it to 0 to disable automatic flushing.

Default
3600000

hbase.regionserver.dns.interface

Description

The name of the Network Interface from which a region server should report its IP address.

Default
default

hbase.regionserver.dns.nameserver

Description

The host name or IP address of the name server (DNS) which a region server should use to
determine the host name used by the master for communication and display purposes.

Default
default

hbase.regionserver.region.split.policy

38

Description

A split policy determines when a region should be split. The various other split policies that are
available currently are BusyRegionSplitPolicy, ConstantSizeRegionSplitPolicy,
DisabledRegionSplitPolicy, DelimitedKeyPrefixRegionSplitPolicy, KeyPrefixRegionSplitPolicy, and
SteppingSplitPolicy. DisabledRegionSplitPolicy blocks manual region splitting.

Default
org.apache.hadoop.hbase.regionserver.SteppingSplitPolicy

hbase.regionserver.regionSplitLimit
Description
Limit for the number of regions after which no more region splitting should take place. This is

not hard limit for the number of regions but acts as a guideline for the regionserver to stop
splitting after a certain limit. Default is set to 1000.

Default
1000

zookeeper.session.timeout
Description
ZooKeeper session timeout in milliseconds. It is used in two different ways. First, this value is
used in the ZK client that HBase uses to connect to the ensemble. It is also used by HBase when it
starts a ZK server and it is passed as the 'maxSessionTimeout'. See http://hadoop.apache.org/
zookeeper/docs/current/zookeeperProgrammers.html#ch_zkSessions . For example, if an HBase
region server connects to a ZK ensemble thatOs also managed by HBase, then the session timeout
will be the one specified by this configuration. But, a region server that connects to an ensemble
managed with a different configuration will be subjected that ensembleOs maxSessionTimeout.
So, even though HBase might propose using 90 seconds, the ensemble can have a max timeout
lower than this and it will take precedence. The current default that ZK ships with is 40 seconds,
which is lower than HBaseOs.

Default
90000

zookeeper.znode.parent
Description

Root ZNode for HBase in ZooKeeper. All of HBaseOs ZooKeeper files that are configured with a
relative path will go under this node. By default, all of HBaseOs ZooKeeper file paths are
configured with a relative path, so they will all go under this directory unless changed.

Default
/hbase

zookeeper.znode.acl.parent
Description

Root ZNode for access control lists.

Default
acl

hbase.zookeeper.dns.interface
Description

The name of the Network Interface from which a ZooKeeper server should report its IP address.

Default
default

hbase.zookeeper.dns.nameserver

39

http://hadoop.apache.org/zookeeper/docs/current/zookeeperProgrammers.html#ch_zkSessions
http://hadoop.apache.org/zookeeper/docs/current/zookeeperProgrammers.html#ch_zkSessions

Description

The host name or IP address of the name server (DNS) which a ZooKeeper server should use to
determine the host name used by the master for communication and display purposes.

Default
default

hbase.zookeeper.peerport
Description

Port used by ZooKeeper peers to talk to each other. See http://hadoop.apache.org/zookeeper/docs/
r3.1.1/zookeeperStarted.html#sc_RunningReplicatedZooKeeper for more information.

Default
2888

hbase.zookeeper.leaderport
Description

Port used by ZooKeeper for leader election. See http://hadoop.apache.org/zookeeper/docs/r3.1.1/
zookeeperStarted.html#sc_RunningReplicatedZooKeeper for more information.

Default
3888

hbase.zookeeper.property.initLimit
Description

Property from ZooKeeperOs config zoo.cfg. The number of ticks that the initial synchronization
phase can take.

Default
10

hbase.zookeeper.property.syncLimit
Description

Property from ZooKeeperOs config zoo.cfg. The number of ticks that can pass between sending a
request and getting an acknowledgment.

Default
5

hbase.zookeeper.property.dataDir
Description

Property from ZooKeeperOs config zoo.cfg. The directory where the snapshot is stored.

Default
${hbase.tmp.dir}/zookeeper

hbase.zookeeper.property.clientPort
Description

Property from ZooKeeperOs config zoo.cfg. The port at which the clients will connect.

40

http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperStarted.html#sc_RunningReplicatedZooKeeper
http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperStarted.html#sc_RunningReplicatedZooKeeper
http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperStarted.html#sc_RunningReplicatedZooKeeper
http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperStarted.html#sc_RunningReplicatedZooKeeper

Default
2181

hbase.zookeeper.property.maxClientCnxns
Description
Property from ZooKeeperOs config zoo.cfg. Limit on number of concurrent connections (at the
socket level) that a single client, identified by IP address, may make to a single member of the
ZooKeeper ensemble. Set high to avoid zk connection issues running standalone and pseudo-
distributed.

Default
300

hbase.client.write.buffer
Description
Default size of the BufferedMutator write buffer in bytes. A bigger buffer takes more
memory!Nlon both the client and server side since server instantiates the passed write buffer to
process itINIbut a larger buffer size reduces the number of RPCs made. For an estimate of
server-side memory-used, evaluate hbase.client.write.buffer * hbase.regionserver.handler.count

Default
2097152

hbase.client.pause
Description
General client pause value. Used mostly as value to wait before running a retry of a failed get,
region lookup, etc. See hbase.client.retries.number for description of how we backoff from this
initial pause amount and how this pause works w/ retries.

Default
100

hbase.client.pause.cqtbe
Description
Whether or not to use a special client pause for CallQueueTooBigException (cqtbe). Set this
property to a higher value than hbase.client.pause if you observe frequent CQTBE from the same
RegionServer and the call queue there keeps full

Default

none

hbase.client.retries.number
Description

Maximum retries. Used as maximum for all retryable operations such as the getting of a cellOs
value, starting a row update, etc. Retry interval is a rough function based on hbase.client.pause.

At first we retry at this interval but then with backoff, we pretty quickly reach retrying every ten
seconds. See HConstants#RETRY_BACKOFF for how the backup ramps up. Change this setting
and hbase.client.pause to suit your workload.

Default
15

hbase.client.max.total.tasks
Description

The maximum number of concurrent mutation tasks a single HTable instance will send to the
cluster.

Default
100

hbase.client.max.perserver.tasks
Description

The maximum number of concurrent mutation tasks a single HTable instance will send to a
single region server.

Default
2

hbase.client.max.perregion.tasks
Description
The maximum number of concurrent mutation tasks the client will maintain to a single Region.
That is, if there is already hbase.client.max.perregion.tasks writes in progress for this region,
new puts wonOt be sent to this region until some writes finishes.

Default
1

hbase.client.perserver.requests.threshold
Description

The max number of concurrent pending requests for one server in all client threads (process
level). Exceeding requests will be thrown ServerTooBusyException immediately to prevent
userOs threads being occupied and blocked by only one slow region server. If you use a fix
number of threads to access HBase in a synchronous way, set this to a suitable value which is
related to the number of threads will help you. See https://issues.apache.org/jira/browse/HBASE-
16388 for details.

Default
2147483647

hbase.client.scanner.caching
Description

Number of rows that we try to fetch when calling next on a scanner if it is not served from
(local, client) memory. This configuration works together with
hbase.client.scanner.max.result.size to try and use the network efficiently. The default value is
Integer.MAX_VALUE by default so that the network will fill the chunk size defined by
hbase.client.scanner.max.result.size rather than be limited by a particular number of rows since
the size of rows varies table to table. If you know ahead of time that you will not require more
than a certain number of rows from a scan, this configuration should be set to that row limit via

42

https://issues.apache.org/jira/browse/HBASE-16388
https://issues.apache.org/jira/browse/HBASE-16388

Scan#setCaching. Higher caching values will enable faster scanners but will eat up more
memory and some calls of next may take longer and longer times when the cache is empty. Do
not set this value such that the time between invocations is greater than the scanner timeout; i.e.
hbase.client.scanner.timeout.period

Default
2147483647

hbase.client.keyvalue.maxsize
Description
Specifies the combined maximum allowed size of a KeyValue instance. This is to set an upper
boundary for a single entry saved in a storage file. Since they cannot be split it helps avoiding
that a region cannot be split any further because the data is too large. It seems wise to set this to
a fraction of the maximum region size. Setting it to zero or less disables the check.

Default
10485760

hbase.server.keyvalue.maxsize
Description
Maximum allowed size of an individual cell, inclusive of value and all key components. A value

of 0 or less disables the check. The default value is 10MB. This is a safety setting to protect the
server from OOM situations.

Default
10485760

hbase.client.scanner.timeout.period
Description

Client scanner lease period in milliseconds.

Default
60000

hbase.client.localityCheck.threadPoolSize
Default
2

hbase.bulkload.retries.number
Description

Maximum retries. This is maximum number of iterations to atomic bulk loads are attempted in
the face of splitting operations 0 means never give up.

Default
10

hbase.master.balancer.maxRitPercent

Description

The max percent of regions in transition when balancing. The default value is 1.0. So there are
no balancer throttling. If set this config to 0.01, It means that there are at most 1% regions in

transition when balancing. Then the clusterOs availability is at least 99% when balancing.

Default
1.0

hbase.balancer.period

Description

Period at which the region balancer runs in the Master.

Default
300000

hbase.normalizer.period

Description

Period at which the region normalizer runs in the Master.

Default
300000

hbase.normalizer.min.region.count

Description

configure the minimum number of regions

Default
3

hbase.regions.slop

Description

Rebalance if any regionserver has average + (average * slop) regions. The default value of this
parameter is 0.001 in StochasticLoadBalancer (the default load balancer), while the default is 0.2
in other load balancers (i.e., SimpleLoadBalancer).

Default
0.001

hbase.server.thread.wakefrequency

Description

Time to sleep in between searches for work (in milliseconds). Used as sleep interval by service
threads such as log roller.

Default
10000

hbase.server.versionfile.writeattempts

44

Description

How many times to retry attempting to write a version file before just aborting. Each attempt is
separated by the hbase.server.thread.wakefrequency milliseconds.

Default
3

hbase.hregion.memstore.flush.size
Description

Memstore will be flushed to disk if size of the memstore exceeds this number of bytes. Value is
checked by a thread that runs every hbase.server.thread.wakefrequency.

Default
134217728

hbase.hregion.percolumnfamilyflush.size.lower.bound.min
Description

If FlushLargeStoresPolicy is used and there are multiple column families, then every time that
we hit the total memstore limit, we find out all the column families whose memstores exceed a
"lower bound" and only flush them while retaining the others in memory. The "lower bound"
will be "hbase.hregion.memstore.flush.size / column_family_number" by default unless value of
this property is larger than that. If none of the families have their memstore size more than
lower bound, all the memstores will be flushed (just as usual).

Default
16777216

hbase.hregion.preclose.flush.size
Description

If the memstores in a region are this size or larger when we go to close, run a "pre-flush” to clear
out memstores before we put up the region closed flag and take the region offline. On close, a
flush is run under the close flag to empty memory. During this time the region is offline and we
are not taking on any writes. If the memstore content is large, this flush could take a long time to
complete. The preflush is meant to clean out the bulk of the memstore before putting up the
close flag and taking the region offline so the flush that runs under the close flag has little to do.

Default
5242880

hbase.hregion.memstore.block.multiplier
Description
Block updates if memstore has hbase.hregion.memstore.block.multiplier times
hbase.hregion.memstore.flush.size bytes. Useful preventing runaway memstore during spikes in
update traffic. Without an upper-bound, memstore fills such that when it flushes the resultant
flush files take a long time to compact or split, or worse, we OOME.

Default
4

hbase.hregion.memstore.mslab.enabled
Description

Enables the MemStore-Local Allocation Buffer, a feature which works to prevent heap
fragmentation under heavy write loads. This can reduce the frequency of stop-the-world GC
pauses on large heaps.

Default

true

hbase.hregion.max.filesize
Description

Maximum HFile size. If the sum of the sizes of a regionOs HFiles has grown to exceed this value,
the region is split in two.

Default
10737418240

hbase.hregion.majorcompaction
Description
Time between major compactions, expressed in milliseconds. Set to 0 to disable time-based
automatic major compactions. User-requested and size-based major compactions will still run.
This value is multiplied by hbase.hregion.majorcompaction.jitter to cause compaction to start at
a somewhat-random time during a given window of time. The default value is 7 days, expressed
in milliseconds. If major compactions are causing disruption in your environment, you can
configure them to run at off-peak times for your deployment, or disable time-based major
compactions by setting this parameter to 0, and run major compactions in a cron job or by
another external mechanism.

Default
604800000

hbase.hregion.majorcompaction.jitter
Description
A multiplier applied to hbase.hregion.majorcompaction to cause compaction to occur a given

amount of time either side of hbase.hregion.majorcompaction. The smaller the number, the
closer the compactions will happen to the hbase.hregion.majorcompaction interval.

Default
0.50

hbase.hstore.compactionThreshold
Description

If more than this number of StoreFiles exist in any one Store (one StoreFile is written per flush
of MemStore), a compaction is run to rewrite all StoreFiles into a single StoreFile. Larger values
delay compaction, but when compaction does occur, it takes longer to complete.

Default
3

hbase.regionserver.compaction.enabled
Description

Enable/disable compactions on by setting true/false. We can further switch compactions
dynamically with the compaction_switch shell command.

Default

true

46

hbase.hstore.flusher.count
Description

The number of flush threads. With fewer threads, the MemStore flushes will be queued. With
more threads, the flushes will be executed in parallel, increasing the load on HDFS, and
potentially causing more compactions.

Default
2

hbase.hstore.blockingStoreFiles
Description

If more than this number of StoreFiles exist in any one Store (one StoreFile is written per flush
of MemStore), updates are blocked for this region until a compaction is completed, or until
hbase.hstore.blockingWaitTime has been exceeded.

Default
16

hbase.hstore.blockingWaitTime
Description

The time for which a region will block updates after reaching the StoreFile limit defined by
hbase.hstore.blockingStoreFiles. After this time has elapsed, the region will stop blocking
updates even if a compaction has not been completed.

Default
90000

hbase.hstore.compaction.min
Description

The minimum number of StoreFiles which must be eligible for compaction before compaction
can run. The goal of tuning hbase.hstore.compaction.min is to avoid ending up with too many
tiny StoreFiles to compact. Setting this value to 2 would cause a minor compaction each time you
have two StoreFiles in a Store, and this is probably not appropriate. If you set this value too high,
all the other values will need to be adjusted accordingly. For most cases, the default value is
appropriate. In previous versions of HBase, the parameter hbase.hstore.compaction.min was
named hbase.hstore.compactionThreshold.

Default
3

hbase.hstore.compaction.max
Description

The maximum number of StoreFiles which will be selected for a single minor compaction,
regardless of the number of eligible StoreFiles. Effectively, the value of
hbase.hstore.compaction.max controls the length of time it takes a single compaction to
complete. Setting it larger means that more StoreFiles are included in a compaction. For most
cases, the default value is appropriate.

Default

10

hbase.hstore.compaction.min.size

Description

A StoreFile (or a selection of StoreFiles, when using ExploringCompactionPolicy) smaller than
this size will always be eligible for minor compaction. HFiles this size or larger are evaluated by
hbase.hstore.compaction.ratio to determine if they are eligible. Because this limit represents the
"automatic include" limit for all StoreFiles smaller than this value, this value may need to be
reduced in write-heavy environments where many StoreFiles in the 1-2 MB range are being
flushed, because every StoreFile will be targeted for compaction and the resulting StoreFiles
may still be under the minimum size and require further compaction. If this parameter is
lowered, the ratio check is triggered more quickly. This addressed some issues seen in earlier
versions of HBase but changing this parameter is no longer necessary in most situations.
Default: 128 MB expressed in bytes.

Default
134217728

hbase.hstore.compaction.max.size

Description

A StoreFile (or a selection of StoreFiles, when using ExploringCompactionPolicy) larger than this
size will be excluded from compaction. The effect of raising hbase.hstore.compaction.max.size is
fewer, larger StoreFiles that do not get compacted often. If you feel that compaction is
happening too often without much benefit, you can try raising this value. Default: the value of
LONG.MAX_VALUE, expressed in bytes.

Default
9223372036854775807

hbase.hstore.compaction.ratio

Description

For minor compaction, this ratio is used to determine whether a given StoreFile which is larger
than hbase.hstore.compaction.min.size is eligible for compaction. Its effect is to limit compaction
of large StoreFiles. The value of hbase.hstore.compaction.ratio is expressed as a floating-point
decimal. A large ratio, such as 10, will produce a single giant StoreFile. Conversely, a low value,
such as .25, will produce behavior similar to the BigTable compaction algorithm, producing four
StoreFiles. A moderate value of between 1.0 and 1.4 is recommended. When tuning this value,
you are balancing write costs with read costs. Raising the value (to something like 1.4) will have
more write costs, because you will compact larger StoreFiles. However, during reads, HBase will
need to seek through fewer StoreFiles to accomplish the read. Consider this approach if you
cannot take advantage of Bloom filters. Otherwise, you can lower this value to something like 1.0
to reduce the background cost of writes, and use Bloom filters to control the number of
StoreFiles touched during reads. For most cases, the default value is appropriate.

Default
1.2F

hbase.hstore.compaction.ratio.offpeak

48

Description

Allows you to set a different (by default, more aggressive) ratio for determining whether larger
StoreFiles are included in compactions during off-peak hours. Works in the same way as
hbase.hstore.compaction.ratio. Only applies if hbase.offpeak.start.hour and
hbase.offpeak.end.hour are also enabled.

Default
5.0F

hbase.hstore.time.to.purge.deletes
Description

The amount of time to delay purging of delete markers with future timestamps. If unset, or set to
0, all delete markers, including those with future timestamps, are purged during the next major
compaction. Otherwise, a delete marker is kept until the major compaction which occurs after
the markerOs timestamp plus the value of this setting, in milliseconds.

Default
0

hbase.offpeak.start.hour
Description

The start of off-peak hours, expressed as an integer between 0 and 23, inclusive. Set to -1 to
disable off-peak.

Default
-1

hbase.offpeak.end.hour
Description

The end of off-peak hours, expressed as an integer between 0 and 23, inclusive. Set to -1 to
disable off-peak.

Default
-1

hbase.regionserver.thread.compaction.throttle
Description

There are two different thread pools for compactions, one for large compactions and the other
for small compactions. This helps to keep compaction of lean tables (such as hbase:meta) fast. If
a compaction is larger than this threshold, it goes into the large compaction pool. In most cases,
the default value is appropriate. Default: 2 x hbase.hstore.compaction.max X
hbase.hregion.memstore.flush.size (which defaults to 128MB). The value field assumes that the
value of hbase.hregion.memstore.flush.size is unchanged from the default.

Default
2684354560

hbase.regionserver.majorcompaction.pagecache.drop
Description

Specifies whether to drop pages read/written into the system page cache by major compactions.

Setting it to true helps prevent major compactions from polluting the page cache, which is
almost always required, especially for clusters with low/moderate memory to storage ratio.

Default
true

hbase.regionserver.minorcompaction.pagecache.drop

Description

Specifies whether to drop pages read/written into the system page cache by minor compactions.
Setting it to true helps prevent minor compactions from polluting the page cache, which is most
beneficial on clusters with low memory to storage ratio or very write heavy clusters. You may
want to set it to false under moderate to low write workload when bulk of the reads are on the
most recently written data.

Default

true

hbase.hstore.compaction.kv.max

Description

The maximum number of KeyValues to read and then write in a batch when flushing or
compacting. Set this lower if you have big KeyValues and problems with Out Of Memory
Exceptions Set this higher if you have wide, small rows.

Default
10

hbase.storescanner.parallel.seek.enable

Description

Enables StoreFileScanner parallel-seeking in StoreScanner, a feature which can reduce response
latency under special conditions.

Default

false

hbase.storescanner.parallel.seek.threads

Description

The default thread pool size if parallel-seeking feature enabled.

Default
10

hfile.block.cache.size

50

Description

Percentage of maximum heap (-Xmx setting) to allocate to block cache used by a StoreFile.
Default of 0.4 means allocate 40%. Set to O to disable but itOs not recommended; you need at least
enough cache to hold the storefile indices.

Default
0.4

hfile.block.index.cacheonwrite
Description

This allows to put non-root multi-level index blocks into the block cache at the time the index is
being written.

Default

false

hfile.index.block.max.size
Description

When the size of a leaf-level, intermediate-level, or root-level index block in a multi-level block
index grows to this size, the block is written out and a new block is started.

Default
131072

hbase.bucketcache.ioengine
Description

Where to store the contents of the bucketcache. One of: offheap, file, files or mmap. If a file or

files, set it to file(s):PATH_TO_FILE. mmap means the content will be in an mmaped file. Use
mmap:PATH_TO_FILE. See http://hbase.apache.org/book.html#offheap.blockcache for more
information.

Default

none

hbase.bucketcache.size
Description

A float that EITHER represents a percentage of total heap memory size to give to the cache (if <
1.0) OR, it is the total capacity in megabytes of BucketCache. Default: 0.0

Default

none

hbase.bucketcache.bucket.sizes
Description

A comma-separated list of sizes for buckets for the bucketcache. Can be multiple sizes. List block
sizes in order from smallest to largest. The sizes you use will depend on your data access
patterns. Must be a multiple of 256 else you will run into 'java.io.lOException: Invalid HFile
block magic' when you go to read from cache. If you specify no values here, then you pick up the
default bucketsizes set in code (See BucketAllocator#DEFAULT_BUCKET_SIZES).

Default

none

hfile.format.version
Description

The HFile format version to use for new files. Version 3 adds support for tags in hfiles (See

51

http://hbase.apache.org/book.html#offheap.blockcache

http://hbase.apache.org/book.html#hbase.tags). Also see the configuration
'hbase.replication.rpc.codec'.

Default
3

hfile.block.bloom.cacheonwrite
Description

Enables cache-on-write for inline blocks of a compound Bloom filter.

Default
false

io.storefile.bloom.block.size
Description
The size in bytes of a single block ("chunk®) of a compound Bloom filter. This size is

approximate, because Bloom blocks can only be inserted at data block boundaries, and the
number of keys per data block varies.

Default
131072

hbase.rs.cacheblocksonwrite
Description

Whether an HFile block should be added to the block cache when the block is finished.

Default
false

hbase.rpc.timeout
Description
This is for the RPC layer to define how long (millisecond) HBase client applications take for a
remote call to time out. It uses pings to check connections but will eventually throw a
TimeoutException.

Default
60000

hbase.client.operation.timeout
Description
Operation timeout is a top-level restriction (millisecond) that makes sure a blocking operation in
Table will not be blocked more than this. In each operation, if rpc request fails because of
timeout or other reason, it will retry until success or throw RetriesExhaustedException. But if
the total time being blocking reach the operation timeout before retries exhausted, it will break
early and throw SocketTimeoutException.

Default
1200000

52

http://hbase.apache.org/book.html#hbase.tags

hbase.cells.scanned.per.heartbeat.check
Description
The number of cells scanned in between heartbeat checks. Heartbeat checks occur during the
processing of scans to determine whether or not the server should stop scanning in order to
send back a heartbeat message to the client. Heartbeat messages are used to keep the client-
server connection alive during long running scans. Small values mean that the heartbeat checks
will occur more often and thus will provide a tighter bound on the execution time of the scan.
Larger values mean that the heartbeat checks occur less frequently

Default
10000

hbase.rpc.shortoperation.timeout
Description
This is another version of "hbase.rpc.timeout". For those RPC operation within cluster, we rely
on this configuration to set a short timeout limitation for short operation. For example, short rpc
timeout for region serverOs trying to report to active master can benefit quicker master failover
process.

Default
10000

hbase.ipc.client.tcpnodelay
Description

Set no delay on rpc socket connections. See http://docs.oracle.com/javase/1.5.0/docs/api/java/net/
Socket.html#getTcpNoDelay()

Default

true

hbase.regionserver.hostname
Description
This config is for experts: donOt set its value unless you really know what you are doing. When

set to a non-empty value, this represents the (external facing) hostname for the underlying
server. See https://issues.apache.org/jira/browse/HBASE-12954 for details.

Default

none

hbase.regionserver.hostname.disable.master.reversedns
Description
This config is for experts: donOt set its value unless you really know what you are doing. When
set to true, regionserver will use the current node hostname for the servername and HMaster
will skip reverse DNS lookup and use the hostname sent by regionserver instead. Note that this
config and hbase.regionserver.hosthname are mutually exclusive. See https://issues.apache.org/
jira/browse/HBASE-18226 for more detalils.

Default
false

53

http://docs.oracle.com/javase/1.5.0/docs/api/java/net/Socket.html#getTcpNoDelay(
http://docs.oracle.com/javase/1.5.0/docs/api/java/net/Socket.html#getTcpNoDelay(
https://issues.apache.org/jira/browse/HBASE-12954
https://issues.apache.org/jira/browse/HBASE-18226
https://issues.apache.org/jira/browse/HBASE-18226

hbase.master.keytab.file
Description

Full path to the kerberos keytab file to use for logging in the configured HMaster server
principal.

Default

none

hbase.master.kerberos.principal
Description

Ex. "hbase/_ HOST@EXAMPLE.COM". The kerberos principal name that should be used to run the
HMaster process. The principal name should be in the form: user/hostname@DOMAIN. If
" HOST" is used as the hostname portion, it will be replaced with the actual hostname of the
running instance.

Default

none

hbase.regionserver.keytab.file
Description

Full path to the kerberos keytab file to use for logging in the configured HRegionServer server
principal.

Default

none

hbase.regionserver.kerberos.principal
Description

Ex. "hbase/ HOST@EXAMPLE.COM". The kerberos principal name that should be used to run the
HRegionServer process. The principal name should be in the form: user/hostname @DOMAIN. If

" HOST" is used as the hostname portion, it will be replaced with the actual hostname of the
running instance. An entry for this principal must exist in the file specified in
hbase.regionserver.keytab.file

Default

none
hadoop.policy.file

Description

The policy configuration file used by RPC servers to make authorization decisions on client
requests. Only used when HBase security is enabled.

Default
hbase-policy.xml

hbase.superuser
Description

List of users or groups (comma-separated), who are allowed full privileges, regardless of stored

54

ACLs, across the cluster. Only used when HBase security is enabled.

Default

none

hbase.auth.key.update.interval
Description

The update interval for master key for authentication tokens in servers in milliseconds. Only
used when HBase security is enabled.

Default
86400000

hbase.auth.token.max.lifetime
Description

The maximum lifetime in milliseconds after which an authentication token expires. Only used
when HBase security is enabled.

Default
604800000

hbase.ipc.client.fallback-to-simple-auth-allowed
Description
When a client is configured to attempt a secure connection, but attempts to connect to an
insecure server, that server may instruct the client to switch to SASL SIMPLE (unsecure)
authentication. This setting controls whether or not the client will accept this instruction from
the server. When false (the default), the client will not allow the fallback to SIMPLE
authentication, and will abort the connection.

Default
false

hbase.ipc.server.fallback-to-simple-auth-allowed
Description
When a server is configured to require secure connections, it will reject connection attempts
from clients using SASL SIMPLE (unsecure) authentication. This setting allows secure servers to
accept SASL SIMPLE connections from clients when the client requests. When false (the default),
the server will not allow the fallback to SIMPLE authentication, and will reject the connection.
WARNING: This setting should ONLY be used as a temporary measure while converting clients
over to secure authentication. It MUST BE DISABLED for secure operation.

Default
false

hbase.display.keys
Description

When this is set to true the webUI and such will display all start/end keys as part of the table
details, region names, etc. When this is set to false, the keys are hidden.

Default

true

hbase.coprocessor.enabled

Description

Enables or disables coprocessor loading. If ‘false’ (disabled), any other coprocessor related
configuration will be ignored.

Default
true

hbase.coprocessor.user.enabled

Description

Enables or disables user (aka. table) coprocessor loading. If ‘false’ (disabled), any table
coprocessor attributes in table descriptors will be ignored. If "hbase.coprocessor.enabled" is
‘false’ this setting has no effect.

Default
true

hbase.coprocessor.region.classes

Description

A comma-separated list of region observer or endpoint coprocessors that are loaded by default
on all tables. For any override coprocessor method, these classes will be called in order. After
implementing your own Coprocessor, add it to HBaseOs classpath and add the fully qualified
class name here. A coprocessor can also be loaded on demand by setting HTableDescriptor or
the HBase shell.

Default

none

hbase.coprocessor.master.classes

Description

A comma-separated list of org.apache.hadoop.hbase.coprocessor.MasterObserver coprocessors
that are loaded by default on the active HMaster process. For any implemented coprocessor
methods, the listed classes will be called in order. After implementing your own
MasterObserver, just put it in HBaseOs classpath and add the fully qualified class name here.

Default

none

hbase.coprocessor.abortonerror

56

Description

Set to true to cause the hosting server (master or regionserver) to abort if a coprocessor fails to
load, fails to initialize, or throws an unexpected Throwable object. Setting this to false will allow
the server to continue execution but the system wide state of the coprocessor in question will
become inconsistent as it will be properly executing in only a subset of servers, so this is most
useful for debugging only.

Default
true

hbase.rest.port

Description

The port for the HBase REST server.

Default
8080

hbase.rest.readonly
Description

Defines the mode the REST server will be started in. Possible values are: false: All HTTP methods
are permitted - GET/PUT/POST/DELETE. true: Only the GET method is permitted.

Default
false

hbase.rest.threads.max
Description
The maximum number of threads of the REST server thread pool. Threads in the pool are reused
to process REST requests. This controls the maximum number of requests processed
concurrently. It may help to control the memory used by the REST server to avoid OOM issues. If
the thread pool is full, incoming requests will be queued up and wait for some free threads.

Default
100

hbase.rest.threads.min
Description

The minimum number of threads of the REST server thread pool. The thread pool always has at
least these number of threads so the REST server is ready to serve incoming requests.

Default
2

hbase.rest.support.proxyuser
Description

Enables running the REST server to support proxy-user mode.

Default
false

hbase.defaults.for.version.skip
Description

Set to true to skip the 'hbase.defaults.for.version' check. Setting this to true can be useful in
contexts other than the other side of a maven generation; i.e. running in an IDE. YouOll want to
set this boolean to true to avoid seeing the RuntimeException complaint: "hbase-default.xml file
seems to be for and old version of HBase (\${hbase.version}), this version is X.X.X-SNAPSHOT"

Default
false

hbase.table.lock.enable

Description

Set to true to enable locking the table in zookeeper for schema change operations. Table locking
from master prevents concurrent schema modifications to corrupt table state.

Default
true

hbase.table.max.rowsize

Description

Maximum size of single row in bytes (default is 1 Gb) for GetOting or ScanOning without in-row
scan flag set. If row size exceeds this limit RowTooBigException is thrown to client.

Default
1073741824

hbase.thrift. minWorkerThreads

Description

The "core size" of the thread pool. New threads are created on every connection until this many
threads are created.

Default
16

hbase.thrift. naxWorkerThreads

Description

The maximum size of the thread pool. When the pending request queue overflows, new threads
are created until their number reaches this number. After that, the server starts dropping
connections.

Default
1000

hbase.thrift. mnaxQueuedRequests

Description

The maximum number of pending Thrift connections waiting in the queue. If there are no idle
threads in the pool, the server queues requests. Only when the queue overflows, new threads
are added, up to hbase.thrift. naxQueuedRequests threads.

Default
1000

hbase.regionserver.thrift.framed

58

Description

Use Thrift TFramedTransport on the server side. This is the recommended transport for thrift
servers and requires a similar setting on the client side. Changing this to false will select the
default transport, vulnerable to DoS when malformed requests are issued due to THRIFT-601.

Default
false

hbase.regionserver.thrift.framed.max_frame_size_in_mb

Description

Default frame size when using framed transport, in MB

Default
2

hbase.regionserver.thrift.compact
Description

Use Thrift TCompactProtocol binary serialization protocol.

Default
false

hbase.rootdir.perms

Description

FS Permissions for the root data subdirectory in a secure (kerberos) setup. When master starts, it

creates the rootdir with this permissions or sets the permissions if it does not match.

Default
700

hbase.wal.dir.perms
Description

FS Permissions for the root WAL directory in a secure(kerberos) setup. When master starts, it

creates the WAL dir with this permissions or sets the permissions if it does not match.

Default
700

hbase.data.umask.enable
Description

Enable, if true, that file permissions should be assigned to the files written by the regionserver

Default
false

hbase.data.umask

Description

File permissions that should be used to write data files when hbase.data.umask.enable is true

Default
000

hbase.snapshot.enabled
Description

Set to true to allow snapshots to be taken / restored / cloned.

59

Default

true

hbase.snapshot.restore.take.failsafe.snapshot

Description

Set to true to take a snapshot before the restore operation. The snapshot taken will be used in
case of failure, to restore the previous state. At the end of the restore operation this snapshot will
be deleted

Default

true

hbase.snapshot.restore.failsafe.name

Description

Name of the failsafe snapshot taken by the restore operation. You can use the {snapshot.name},
{table.name} and {restore.timestamp} variables to create a name based on what you are
restoring.

Default
hbase-failsafe-{snapshot.name}-{restore.timestamp}

hbase.snapshot.working.dir

Description

Location where the snapshotting process will occur. The location of the completed snapshots
will not change, but the temporary directory where the snapshot process occurs will be set to
this location. This can be a separate filesystem than the root directory, for performance increase
purposes. See HBASE-21098 for more information

Default

none

hbase.server.compactchecker.interval.multiplier

Description

The number that determines how often we scan to see if compaction is necessary. Normally,
compactions are done after some events (such as memstore flush), but if region didnOt receive a
lot of writes for some time, or due to different compaction policies, it may be necessary to check

it periodically. The interval between checks is hbase.server.compactchecker.interval.multiplier
multiplied by hbase.server.thread.wakefrequency.

Default
1000

hbase.lease.recovery.timeout

60

Description

How long we wait on dfs lease recovery in total before giving up.

Default
900000

hbase.lease.recovery.dfs.timeout
Description
How long between dfs recover lease invocations. Should be larger than the sum of the time it
takes for the namenode to issue a block recovery command as part of datanode;
dfs.heartbeat.interval and the time it takes for the primary datanode, performing block recovery
to timeout on a dead datanode; usually dfs.client.socket-timeout. See the end of HBASE-8389 for
more.

Default
64000

hbase.column.max.version
Description

New column family descriptors will use this value as the default number of versions to keep.

Default
1

dfs.client.read.shortcircuit
Description

If set to true, this configuration parameter enables short-circuit local reads.

Default
false

dfs.domain.socket.path
Description

This is a path to a UNIX domain socket that will be used for communication between the
DataNode and local HDFS clients, if dfs.client.read.shortcircuit is set to true. If the string *_PORT"
is present in this path, it will be replaced by the TCP port of the DataNode. Be careful about
permissions for the directory that hosts the shared domain socket; dfsclient will complain if
open to other users than the HBase user.

Default
none

hbase.dfs.client.read.shortcircuit.buffer.size
Description

If the DFSClient configuration dfs.client.read.shortcircuit.buffer.size is unset, we will use what is
configured here as the short circuit read default direct byte buffer size. DFSClient native default

is 1MB; HBase keeps its HDFS files open so number of file blocks * 1MB soon starts to add up and
threaten OOME because of a shortage of direct memory. So, we set it down from the default.
Make it > the default hbase block size set in the HColumnDescriptor which is usually 64k.

Default
131072

hbase.regionserver.checksum.verify
Description

If set to true (the default), HBase verifies the checksums for hfile blocks. HBase writes
checksums inline with the data when it writes out hfiles. HDFS (as of this writing) writes
checksums to a separate file than the data file necessitating extra seeks. Setting this flag saves
some on i/o. Checksum verification by HDFS will be internally disabled on hfile streams when
this flag is set. If the hbase-checksum verification fails, we will switch back to using HDFS
checksums (so do not disable HDFS checksums! And besides this feature applies to hfiles only,
not to WALS). If this parameter is set to false, then hbase will not verify any checksums, instead
it will depend on checksum verification being done in the HDFS client.

Default

true

hbase.hstore.bytes.per.checksum
Description

Number of bytes in a newly created checksum chunk for HBase-level checksums in hfile blocks.

Default
16384

hbase.hstore.checksum.algorithm
Description

Name of an algorithm that is used to compute checksums. Possible values are NULL, CRC32,
CRC32C.

Default
CRC32C

hbase.client.scanner.max.result.size
Description
Maximum number of bytes returned when calling a scannerOs next method. Note that when a
single row is larger than this limit the row is still returned completely. The default value is 2MB,

which is good for 1ge networks. With faster and/or high latency networks this value should be
increased.

Default
2097152

hbase.server.scanner.max.result.size
Description

Maximum number of bytes returned when calling a scannerOs next method. Note that when a
single row is larger than this limit the row is still returned completely. The default value is
100MB. This is a safety setting to protect the server from OOM situations.

Default
104857600

hbase.status.published
Description

This setting activates the publication by the master of the status of the region server. When a

62

region server dies and its recovery starts, the master will push this information to the client
application, to let them cut the connection immediately instead of waiting for a timeout.

Default
false

hbase.status.publisher.class
Description

Implementation of the status publication with a multicast message.

Default
org.apache.hadoop.hbase.master.ClusterStatusPublisher$MulticastPublisher

hbase.status.listener.class
Description

Implementation of the status listener with a multicast message.

Default
org.apache.hadoop.hbase.client.ClusterStatusListener$MulticastListener

hbase.status.multicast.address.ip
Description

Multicast address to use for the status publication by multicast.

Default
226.1.1.3

hbase.status.multicast.address.port
Description

Multicast port to use for the status publication by multicast.

Default
16100

hbase.dynamic.jars.dir
Description

The directory from which the custom filter JARs can be loaded dynamically by the region server
without the need to restart. However, an already loaded filter/co-processor class would not be
un-loaded. See HBASE-1936 for more details. Does not apply to coprocessors.

Default
${hbase.rootdir}/lib

hbase.security.authentication
Description

Controls whether or not secure authentication is enabled for HBase. Possible values are 'simple’
(no authentication), and 'kerberos'.

Default

simple

63

hbase.rest.filter.classes
Description

Servlet filters for REST service.

Default
org.apache.hadoop.hbase.rest.filter.GzipFilter

hbase.master.loadbalancer.class
Description
Class used to execute the regions balancing when the period occurs. See the class comment for
more on how it works http://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/

balancer/StochasticLoadBalancer.html It replaces the DefaultLoadBalancer as the default (since
renamed as the SimpleLoadBalancer).

Default
org.apache.hadoop.hbase.master.balancer.StochasticLoadBalancer

hbase.master.loadbalance.bytable
Description

Factor Table name when the balancer runs. Default: false.

Default
false

hbase.master.normalizer.class
Description
Class used to execute the region normalization when the period occurs. See the class comment

for more on how it works http://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/
normalizer/SimpleRegionNormalizer.html

Default
org.apache.hadoop.hbase.master.normalizer.SimpleRegionNormalizer

hbase.rest.csrf.enabled
Description

Set to true to enable protection against cross-site request forgery (CSRF)

Default
false

hbase.rest-csrf.browser-useragents-regex
Description

A comma-separated list of regular expressions used to match against an HTTP requestOs User-
Agent header when protection against cross-site request forgery (CSRF) is enabled for REST
server by setting hbase.rest.csrf.enabled to true. If the incoming User-Agent matches any of these
regular expressions, then the request is considered to be sent by a browser, and therefore CSRF
prevention is enforced. If the requestOs User-Agent does not match any of these regular
expressions, then the request is considered to be sent by something other than a browser, such
as scripted automation. In this case, CSRF is not a potential attack vector, so the prevention is not

64

http://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/balancer/StochasticLoadBalancer.html
http://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/balancer/StochasticLoadBalancer.html
http://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/normalizer/SimpleRegionNormalizer.html
http://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/normalizer/SimpleRegionNormalizer.html

enforced. This helps achieve backwards-compatibility with existing automation that has not
been updated to send the CSRF prevention header.

Default

Mozilla. , Opera.

hbase.security.exec.permission.checks
Description
If this setting is enabled and ACL based access control is active (the AccessController coprocessor
is installed either as a system coprocessor or on a table as a table coprocessor) then you must
grant all relevant users EXEC privilege if they require the ability to execute coprocessor
endpoint calls. EXEC privilege, like any other permission, can be granted globally to a user, or to
a user on a per table or per namespace basis. For more information on coprocessor endpoints,
see the coprocessor section of the HBase online manual. For more information on granting or
revoking permissions using the AccessController, see the security section of the HBase online
manual.

Default
false

hbase.procedure.regionserver.classes

Description

A comma-separated list of org.apache.hadoop.hbase.procedure.RegionServerProcedureManager
procedure managers that are loaded by default on the active HRegionServer process. The
lifecycle methods (init/start/stop) will be called by the active HRegionServer process to perform
the specific globally barriered procedure. After implementing your own
RegionServerProcedureManager, just put it in HBaseOs classpath and add the fully qualified class
name here.

Default

none

hbase.procedure.master.classes
Description

A comma-separated list of org.apache.hadoop.hbase.procedure.MasterProcedureManager
procedure managers that are loaded by default on the active HMaster process. A procedure is
identified by its signature and users can use the signature and an instant name to trigger an
execution of a globally barriered procedure. After implementing your own
MasterProcedureManager, just put it in HBaseOs classpath and add the fully qualified class name
here.

Default

none

hbase.coordinated.state.manager.class
Description

Fully qualified name of class implementing coordinated state manager.

Default

org.apache.hadoop.hbase.coordination.ZkCoordinatedStateManager

hbase.regionserver.storefile.refresh.period
Description
The period (in milliseconds) for refreshing the store files for the secondary regions. 0 means this
feature is disabled. Secondary regions sees new files (from flushes and compactions) from
primary once the secondary region refreshes the list of files in the region (there is no
notification mechanism). But too frequent refreshes might cause extra Namenode pressure. If
the files cannot be refreshed for longer than HFile TTL (hbase.master.hfilecleaner.ttl) the
requests are rejected. Configuring HFile TTL to a larger value is also recommended with this
setting.

Default
0

hbase.region.replica.replication.enabled
Description
Whether asynchronous WAL replication to the secondary region replicas is enabled or not. If
this is enabled, a replication peer named "region_replica_replication" will be created which will
tail the logs and replicate the mutations to region replicas for tables that have region replication
> 1. If this is enabled once, disabling this replication also requires disabling the replication peer
using shell or Admin java class. Replication to secondary region replicas works over standard
inter-cluster replication.

Default
false

hbase.http.filter.initializers
Description
A comma separated list of class names. Each class in the list must extend
org.apache.hadoop.hbase.http.Filterinitializer. The corresponding Filter will be initialized. Then,
the Filter will be applied to all user facing jsp and servlet web pages. The ordering of the list
defines the ordering of the filters. The default StaticUserWebFilter add a user principal as
defined by the hbase.http.staticuser.user property.

Default
org.apache.hadoop.hbase.http.lib.StaticUserWebFilter

hbase.security.visibility.mutations.checkauths
Description

This property if enabled, will check whether the labels in the visibility expression are associated
with the user issuing the mutation

Default
false

hbase.http.max.threads
Description

The maximum number of threads that the HTTP Server will create in its ThreadPool.

66

Default
16

hbase.replication.rpc.codec
Description
The codec that is to be used when replication is enabled so that the tags are also replicated. This
is used along with HFileV3 which supports tags in them. If tags are not used or if the hfile
version used is HFileV2 then KeyValueCodec can be used as the replication codec. Note that
using KeyValueCodecWithTags for replication when there are no tags causes no harm.

Default
org.apache.hadoop.hbase.codec.KeyValueCodecWithTags

hbase.replication.source.maxthreads
Description
The maximum number of threads any replication source will use for shipping edits to the sinks
in parallel. This also limits the number of chunks each replication batch is broken into. Larger
values can improve the replication throughput between the master and slave clusters. The
default of 10 will rarely need to be changed.

Default
10

hbase.http.staticuser.user
Description

The user name to filter as, on static web filters while rendering content. An example use is the
HDFS web Ul (user to be used for browsing files).

Default
dr.stack

hbase.regionserver.handler.abort.on.error.percent
Description
The percent of region server RPC threads failed to abort RS. -1 Disable aborting; O Abort if even a
single handler has died; 0.x Abort only when this percent of handlers have died; 1 Abort only all
of the handers have died.

Default
0.5

hbase.mob.file.cache.size
Description
Number of opened file handlers to cache. A larger value will benefit reads by providing more
file handlers per maob file cache and would reduce frequent file opening and closing. However, if
this is set too high, this could lead to a "too many opened file handlers" The default value is 1000.

Default
1000

hbase.mob.cache.evict.period

Description

The amount of time in seconds before the mob cache evicts cached mob files. The default value
is 3600 seconds.

Default
3600

hbase.mob.cache.evict.remain.ratio

Description

The ratio (between 0.0 and 1.0) of files that remains cached after an eviction is triggered when
the number of cached mob files exceeds the hbase.mob.file.cache.size. The default value is 0.5f.

Default
0.5f

hbase.master.mob.ttl.cleaner.period

Description

The period that ExpiredMobFileCleanerChore runs. The unit is second. The default value is one
day. The MOB file name uses only the date part of the file creation time in it. We use this time for
deciding TTL expiry of the files. So the removal of TTL expired files might be delayed. The max
delay might be 24 hrs.

Default
86400

hbase.mob.compaction.mergeable.threshold

Description

If the size of a mob file is less than this value, itOs regarded as a small file and needs to be merged
in mob compaction. The default value is 1280MB.

Default
1342177280

hbase.mob.delfile.max.count

hb

68

Description

The max number of del files that is allowed in the mob compaction. In the mob compaction,
when the number of existing del files is larger than this value, they are merged until number of
del files is not larger this value. The default value is 3.

Default
3

ase.mob.compaction.batch.size

Description

The max number of the mob files that is allowed in a batch of the mob compaction. The mob
compaction merges the small mob files to bigger ones. If the number of the small files is very
large, it could lead to a "too many opened file handlers" in the merge. And the merge has to be
split into batches. This value limits the number of mob files that are selected in a batch of the

mob compaction. The default value is 100.

Default
100

hbase.mob.compaction.chore.period
Description

The period that MobCompactionChore runs. The unit is second. The default value is one week.

Default
604800

hbase.mob.compactor.class
Description

Implementation of mob compactor, the default one is PartitionedMobCompactor.

Default
org.apache.hadoop.hbase.mob.compactions.PartitionedMobCompactor

hbase.mob.compaction.threads.max
Description

The max number of threads used in MobCompactor.

Default
1

hbase.snapshot.master.timeout.millis
Description

Timeout for master for the snapshot procedure execution.

Default
300000

hbase.snapshot.region.timeout
Description

Timeout for regionservers to keep threads in snapshot request pool waiting.

Default
300000

hbase.rpc.rows.warning.threshold
Description

Number of rows in a batch operation above which a warning will be logged.

Default
5000

hbase.master.wait.on.service.seconds
Description

Default is 5 minutes. Make it 30 seconds for tests. See HBASE-19794 for some context.

69

Default
30

7.3. hbase-env.sh

Set HBase environment variables in this file. Examples include options to pass the JVM on start of
an HBase daemon such as heap size and garbage collector configs. You can also set configurations
for HBase configuration, log directories, niceness, ssh options, where to locate process pid files, etc.
Open the file at conf/hbase-env.sh and peruse its content. Each option is fairly well documented. Add
your own environment variables here if you want them read by HBase daemons on startup.

Changes here will require a cluster restart for HBase to notice the change.

7.4. log4j.properties

Edit this file to change rate at which HBase files are rolled and to change the level at which HBase
logs messages.

Changes here will require a cluster restart for HBase to notice the change though log levels can be
changed for particular daemons via the HBase UI.

7.5. Client configuration and dependencies connecting
to an HBase cluster

If you are running HBase in standalone mode, you donOt need to configure anything for your client
to work provided that they are all on the same machine.

Since the HBase Master may move around, clients bootstrap by looking to ZooKeeper for current

critical locations. ZooKeeper is where all these values are kept. Thus clients require the location of

the ZooKeeper ensemble before they can do anything else. Usually this ensemble location is kept
out in the hbase-site.xml and is picked up by the client fromthe = CLASSPATH

If you are configuring an IDE to run an HBase client, you should include the conf/ directory on your
classpath so hbase-site.xml settings can be found (or add src/test/resources to pick up the hbase-
site.xml used by tests).

For Java applications using Maven, including the hbase-shaded-client module is the recommended
dependency when connecting to a cluster:

<dependency>

E <groupld>org.apache.hbase</groupld>

E <artifactld> hbase-shaded-client </artifactld>
E <version>2.0.0 </version>

</dependency>

A basic example hbase-site.xml for client only may look as follows:

70

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>

<configuration>

<property>
<namehbase.zookeeper.quorunx/name>
<value>examplel,example2,examples/value>
<description> The directory shared by region servers.
</description>

E </property>

</configuration>

T > T mp me

7.5.1. Java client configuration
The configuration used by a Java client is kept in an HBaseConfiguration instance.

The factory method on HBaseConfiguration, HBaseConfiguration.create(); , on invocation, will read
in the content of the first hbase-site.xml found on the clientOs CLASSPATHone is present (Invocation
will also factor in any hbase-default.xml found; an hbase-default.xml ships inside the
hbase.X.X.X.jar). It is also possible to specify configuration directly without having to read from a
hbase-site.xml. For example, to set the ZooKeeper ensemble for the cluster programmatically do as
follows:

Configuration config = HBaseConfiguration. create ();
config . set("hbase.zookeeper.quoruni, "localhost "); // Here we are running zookeeper
locally

If multiple ZooKeeper instances make up your ZooKeeper ensemble, they may be specified in a
comma-separated list (just as in the hbase-site.xml file). This populated Configuration instance can
then be passed to an Table, and so on.

7.6. Timeout settings

HBase provides a wide variety of timeout settings to limit the execution time of various remote
operations.

¥ hbase.rpc.timeout

¥ hbase.rpc.read.timeout

¥ hbase.rpc.write.timeout

¥ hbase.client.operation.timeout

¥ hbase.client.meta.operation.timeout

¥ hbase.client.scanner.timeout.period
The hbase.rpc.timeout property limits how long a single RPC call can run before timing out. To fine

tune read or write related RPC timeouts set hbase.rpc.read.timeout and hbase.rpc.write.timeout
configuration properties. In the absence of these properties hbase.rpc.timeout will be used.

71

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HBaseConfiguration
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html

A higher-level timeout is hbase.client.operation.timeout which is valid for each client call. When
an RPC call fails for instance for a timeout due to hbase.rpc.timeout it will be retried until
hbase.client.operation.timeout is reached. Client operation timeout for system tables can be fine
tuned by setting hbase.client.meta.operation.timeout configuration value. When this is not set its
value will use hbase.client.operation.timeout

Timeout for scan operations is controlled differently. Use hbase.client.scanner.timeout.period
property to set this timeout.

72

Chapter 8. Example Configurations

8.1. Basic Distributed HBase Install

Here is a basic configuration example for a distributed ten node cluster: * The nodes are named
exampleQ examplel etc., through node example9in this example. * The HBase Master and the HDFS
NameNode are running on the node example0 * RegionServers run on nodes exampletexample9 * A
3-node ZooKeeper ensemble runs on examplel example2 and example3 on the default ports. *
ZooKeeper data is persisted to the directory /export/zookeeper .

Below we show what the main configuration files!N! hbase-site.xml, regionservers, and hbase-
env.sh!N!found in the HBase conf directory might look like.

8.1.1. hbase-site.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>

<property>

E <namehbase.zookeeper.quorunk/name>

E <value>examplel,example2,exampled/value>

E <description> The directory shared by RegionServers.
E </description>

E </property>

E <property>

E <namehbase.zookeeper.property.dataDir </name>
E <value>/export/zookeeper </value>

E <description> Property from ZooKeeper config zoo.cfg.
E The directory where the snapshot is stored.

E </description>

E </property>

E <property>

E <namehbase.rootdir </name>

E <value>hdfs://example0:8020/hbase </value>

E <description> The directory shared by RegionServers.
E </description>

> [T

E </property>

E <property>

E <namehbase.cluster.distributed </name>

E <value>true </value>

E <description> The mode the cluster will be in. Possible values are

E false: standalone and pseudo-distributed setups with managed ZooKeeper

E true: fully-distributed with unmanaged ZooKeeper Quorum (see hbase-env.sh)
E </description>

E </property>
</configuration>

73

